# American Institute of Mathematical Sciences

February  2015, 35(2): 669-701. doi: 10.3934/dcds.2015.35.669

## Bifurcation values for a family of planar vector fields of degree five

 1 Dept. de Matemàtiques, Universitat Autònoma de Barcelona, Edifici C, 08193 Bellaterra, Barcelona, Spain 2 Laboratoire de Mathématique et Physique Théorique, C.N.R.S. UMR 7350, Faculté des Sciences et Techniques, Université de Tours, Parc de Grandmont,37200 Tours

Received  February 2013 Revised  February 2014 Published  September 2014

We study the number of limit cycles and the bifurcation diagram in the Poincaré sphere of a one-parameter family of planar differential equations of degree five $\dot {\bf x}=X_b({\bf x})$ which has been already considered in previous papers. We prove that there is a value $b^*>0$ such that the limit cycle exists only when $b\in(0,b^*)$ and that it is unique and hyperbolic by using a rational Dulac function. Moreover we provide an interval of length $27/1000$ where $b^*$ lies. As far as we know the tools used to determine this interval are new and are based on the construction of algebraic curves without contact for the flow of the differential equation. These curves are obtained using analytic information about the separatrices of the infinite critical points of the vector field. To prove that the Bendixson--Dulac Theorem works we develop a method for studying whether one-parameter families of polynomials in two variables do not vanish based on the computation of the so called double discriminant.
Citation: Johanna D. García-Saldaña, Armengol Gasull, Hector Giacomini. Bifurcation values for a family of planar vector fields of degree five. Discrete and Continuous Dynamical Systems, 2015, 35 (2) : 669-701. doi: 10.3934/dcds.2015.35.669
##### References:
 [1] M. J. Álvarez, A. Ferragut and X. Jarque, A survey on the blow up technique, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 21 (2011), 3103-3118. doi: 10.1142/S0218127411030416. [2] J. G. Alcazar, J. Schicho and J. R. Sendra, A delineability-based method for computing critical sets of algebraic surfaces, J. Symbolic Comput., 42 (2007), 678-691. doi: 10.1016/j.jsc.2007.02.001. [3] A. A. Andronov, E. A. Leontovich, I. I Gordon and A. G. Maier, Qualitative Theory of Second-Order Dynamic Systems, John Wiley & Sons, New York, 1973. [4] G. A. Baker and P. Graves-Morris, Padé Approximants, Second edition, Encyclopedia of Mathematics and its Applications, 59, Cambridge University Press, Cambridge, 1996. [5] L. A. Cherkas, The Dulac function for polynomial autonomous systems on a plane, (Russian) Differ. Uravn., 33 (1997), 689-699, 719; translation in Differential Equations, 33 (1997), 692-701. [6] L. A. Cherkas, A. A. Grin and K. R. Schneider, Dulac-Cherkas functions for generalized Liénard systems, Electron. J. Qual. Theory Differ. Equ., 35 (2011), 23 pp. [7] C. Chicone, Ordinary Differential Equations with Applications, Second edition, Texts in Applied Mathematics, 34, Springer, New York, 2006. [8] D. Cox, J. Little and D. O'Shea, Using Algebraic Geometry, Graduate Texts in Mathematics, 185, Springer-Verlag, New York, 1998. doi: 10.1007/978-1-4757-6911-1. [9] G. F. D. Duff, Limit-cycles and rotated vector fields, Ann. of Math., 57 (1953), 15-31. doi: 10.2307/1969724. [10] F. Dumortier, Singularities of vector fields on the plane, J. Differential Equations, 23 (1977), 53-106. doi: 10.1016/0022-0396(77)90136-X. [11] F. Dumortier, J. Llibre and J. C. Artés, Qualitative Theory of Planar Differential Systems, Springer-Verlag, Universitext, 2006. [12] A. Gasull and H. Giacomini, A new criterion for controlling the number of limit cycles of some generalized Liénard equations, J. Differential Equations, 185 (2002), 54-73. doi: 10.1006/jdeq.2002.4172. [13] A. Gasull and H. Giacomini, Upper bounds for the number of limit cycles through linear differential equations, Pacific J. Math., 226 (2006), 277-296. doi: 10.2140/pjm.2006.226.277. [14] A. Gasull and H. Giacomini, Upper bounds for the number of limit cycles of some planar polynomial differential systems, Discrete Contin. Dyn. Syst., 27 (2010), 217-229. doi: 10.3934/dcds.2010.27.217. [15] A. Gasull, H. Giacomini and J. Torregrosa, Some results on homoclinic and heteroclinic connections in planar systems, Nonlinearity, 23 (2010), 2977-3001. doi: 10.1088/0951-7715/23/12/001. [16] A. Gasull, H. Giacomini and J. Torregrosa, Explicit upper and lower bounds for the traveling wave solutions of Fisher-Kolmogorov type equations, Discrete Contin. Dyn. Syst., 33 (2013), 3567-3582. doi: 10.3934/dcds.2013.33.3567. [17] M. Han and T. Qian, Uniqueness of periodic solutions for certain second-order equations, Acta Math. Sin. (Engl. Ser.), 20 (2004), 247-254. doi: 10.1007/s10114-003-0300-4. [18] W. Krandick and K. Mehlhorn, New bounds for the Descartes method, J. Symbolic Comput., 41 (2006), 49-66. doi: 10.1016/j.jsc.2005.02.004. [19] D. Lazard and S. McCallum, Iterated discriminants, J. Symbolic Comput., 44 (2009), 1176-1193. doi: 10.1016/j.jsc.2008.05.006. [20] N. G. Lloyd, A note on the number of limit cycles in certain two-dimensional systems, J. London Math. Soc. (2), 20 (1979), 277-286. doi: 10.1112/jlms/s2-20.2.277. [21] A. M. Lyapunov, Stability of Motion, Mathematics in Science and Engineering, 30, Academic Press, New York, London, 1966. [22] L. Markus, Global structure of ordinary differential equations in the plane, Trans. Amer. Math. Soc., 76 (1954), 127-148. doi: 10.1090/S0002-9947-1954-0060657-0. [23] D. Neumann, Classification of continuous flows on 2-manifolds, Proc. Amer. Math. Soc., 48 (1975), 73-81. doi: 10.1090/S0002-9939-1975-0356138-6. [24] L. M. Perko, Rotated vector fields and the global behavior of limit cycles for a class of quadratic systems in the plane, J. Differential Equations, 18 (1975), 63-86. doi: 10.1016/0022-0396(75)90081-9. [25] L. M. Perko, Global families of limit cycles of planar analytic systems, Trans. Amer. Math. Soc., 322 (1990), 627-656. doi: 10.1090/S0002-9947-1990-0998357-4. [26] L. M. Perko, Bifurcation of limit cycles, in Bifurcations of Planar Vector Fields (Luminy, 1989), Lecture Notes in Math., 1455, Springer, Berlin, 1990, 315-333. doi: 10.1007/BFb0085398. [27] L. M. Perko, Differential Equations and Dynamical Systems, Second edition, Texts in Applied Mathematics, 7, Springer-Verlag, New York, 1996. doi: 10.1007/978-1-4684-0249-0. [28] J. Pettigrew and J. A. G. Roberts, Characterizing singular curves in parametrized families of biquadratics, J. Phys. A, 41 (2008), 115203, 28 pp. doi: 10.1088/1751-8113/41/11/115203. [29] J. Stoer and R. Bulirsch, Introduction to Numerical Analysis, Translated from the German by R. Bartels, W. Gautschi and C. Witzgall, Springer-Verlag, New York-Heidelberg, 1980. [30] X. Wang, J. Jiang and P. Yan, Analysis of global bifurcation for a class of systems of degree five, J. Math. Anal. Appl., 222 (1998), 305-318. doi: 10.1006/jmaa.1997.5546. [31] K. Yamato, An effective method of counting the number of limit cycles, Nagoya Math. J., 76 (1979), 35-114.

show all references

##### References:
 [1] M. J. Álvarez, A. Ferragut and X. Jarque, A survey on the blow up technique, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 21 (2011), 3103-3118. doi: 10.1142/S0218127411030416. [2] J. G. Alcazar, J. Schicho and J. R. Sendra, A delineability-based method for computing critical sets of algebraic surfaces, J. Symbolic Comput., 42 (2007), 678-691. doi: 10.1016/j.jsc.2007.02.001. [3] A. A. Andronov, E. A. Leontovich, I. I Gordon and A. G. Maier, Qualitative Theory of Second-Order Dynamic Systems, John Wiley & Sons, New York, 1973. [4] G. A. Baker and P. Graves-Morris, Padé Approximants, Second edition, Encyclopedia of Mathematics and its Applications, 59, Cambridge University Press, Cambridge, 1996. [5] L. A. Cherkas, The Dulac function for polynomial autonomous systems on a plane, (Russian) Differ. Uravn., 33 (1997), 689-699, 719; translation in Differential Equations, 33 (1997), 692-701. [6] L. A. Cherkas, A. A. Grin and K. R. Schneider, Dulac-Cherkas functions for generalized Liénard systems, Electron. J. Qual. Theory Differ. Equ., 35 (2011), 23 pp. [7] C. Chicone, Ordinary Differential Equations with Applications, Second edition, Texts in Applied Mathematics, 34, Springer, New York, 2006. [8] D. Cox, J. Little and D. O'Shea, Using Algebraic Geometry, Graduate Texts in Mathematics, 185, Springer-Verlag, New York, 1998. doi: 10.1007/978-1-4757-6911-1. [9] G. F. D. Duff, Limit-cycles and rotated vector fields, Ann. of Math., 57 (1953), 15-31. doi: 10.2307/1969724. [10] F. Dumortier, Singularities of vector fields on the plane, J. Differential Equations, 23 (1977), 53-106. doi: 10.1016/0022-0396(77)90136-X. [11] F. Dumortier, J. Llibre and J. C. Artés, Qualitative Theory of Planar Differential Systems, Springer-Verlag, Universitext, 2006. [12] A. Gasull and H. Giacomini, A new criterion for controlling the number of limit cycles of some generalized Liénard equations, J. Differential Equations, 185 (2002), 54-73. doi: 10.1006/jdeq.2002.4172. [13] A. Gasull and H. Giacomini, Upper bounds for the number of limit cycles through linear differential equations, Pacific J. Math., 226 (2006), 277-296. doi: 10.2140/pjm.2006.226.277. [14] A. Gasull and H. Giacomini, Upper bounds for the number of limit cycles of some planar polynomial differential systems, Discrete Contin. Dyn. Syst., 27 (2010), 217-229. doi: 10.3934/dcds.2010.27.217. [15] A. Gasull, H. Giacomini and J. Torregrosa, Some results on homoclinic and heteroclinic connections in planar systems, Nonlinearity, 23 (2010), 2977-3001. doi: 10.1088/0951-7715/23/12/001. [16] A. Gasull, H. Giacomini and J. Torregrosa, Explicit upper and lower bounds for the traveling wave solutions of Fisher-Kolmogorov type equations, Discrete Contin. Dyn. Syst., 33 (2013), 3567-3582. doi: 10.3934/dcds.2013.33.3567. [17] M. Han and T. Qian, Uniqueness of periodic solutions for certain second-order equations, Acta Math. Sin. (Engl. Ser.), 20 (2004), 247-254. doi: 10.1007/s10114-003-0300-4. [18] W. Krandick and K. Mehlhorn, New bounds for the Descartes method, J. Symbolic Comput., 41 (2006), 49-66. doi: 10.1016/j.jsc.2005.02.004. [19] D. Lazard and S. McCallum, Iterated discriminants, J. Symbolic Comput., 44 (2009), 1176-1193. doi: 10.1016/j.jsc.2008.05.006. [20] N. G. Lloyd, A note on the number of limit cycles in certain two-dimensional systems, J. London Math. Soc. (2), 20 (1979), 277-286. doi: 10.1112/jlms/s2-20.2.277. [21] A. M. Lyapunov, Stability of Motion, Mathematics in Science and Engineering, 30, Academic Press, New York, London, 1966. [22] L. Markus, Global structure of ordinary differential equations in the plane, Trans. Amer. Math. Soc., 76 (1954), 127-148. doi: 10.1090/S0002-9947-1954-0060657-0. [23] D. Neumann, Classification of continuous flows on 2-manifolds, Proc. Amer. Math. Soc., 48 (1975), 73-81. doi: 10.1090/S0002-9939-1975-0356138-6. [24] L. M. Perko, Rotated vector fields and the global behavior of limit cycles for a class of quadratic systems in the plane, J. Differential Equations, 18 (1975), 63-86. doi: 10.1016/0022-0396(75)90081-9. [25] L. M. Perko, Global families of limit cycles of planar analytic systems, Trans. Amer. Math. Soc., 322 (1990), 627-656. doi: 10.1090/S0002-9947-1990-0998357-4. [26] L. M. Perko, Bifurcation of limit cycles, in Bifurcations of Planar Vector Fields (Luminy, 1989), Lecture Notes in Math., 1455, Springer, Berlin, 1990, 315-333. doi: 10.1007/BFb0085398. [27] L. M. Perko, Differential Equations and Dynamical Systems, Second edition, Texts in Applied Mathematics, 7, Springer-Verlag, New York, 1996. doi: 10.1007/978-1-4684-0249-0. [28] J. Pettigrew and J. A. G. Roberts, Characterizing singular curves in parametrized families of biquadratics, J. Phys. A, 41 (2008), 115203, 28 pp. doi: 10.1088/1751-8113/41/11/115203. [29] J. Stoer and R. Bulirsch, Introduction to Numerical Analysis, Translated from the German by R. Bartels, W. Gautschi and C. Witzgall, Springer-Verlag, New York-Heidelberg, 1980. [30] X. Wang, J. Jiang and P. Yan, Analysis of global bifurcation for a class of systems of degree five, J. Math. Anal. Appl., 222 (1998), 305-318. doi: 10.1006/jmaa.1997.5546. [31] K. Yamato, An effective method of counting the number of limit cycles, Nagoya Math. J., 76 (1979), 35-114.
 [1] Armengol Gasull, Hector Giacomini. Upper bounds for the number of limit cycles of some planar polynomial differential systems. Discrete and Continuous Dynamical Systems, 2010, 27 (1) : 217-229. doi: 10.3934/dcds.2010.27.217 [2] Min Li, Maoan Han. On the number of limit cycles of a quartic polynomial system. Discrete and Continuous Dynamical Systems - S, 2021, 14 (9) : 3167-3181. doi: 10.3934/dcdss.2020337 [3] Ricardo M. Martins, Otávio M. L. Gomide. Limit cycles for quadratic and cubic planar differential equations under polynomial perturbations of small degree. Discrete and Continuous Dynamical Systems, 2017, 37 (6) : 3353-3386. doi: 10.3934/dcds.2017142 [4] Hebai Chen, Xingwu Chen, Jianhua Xie. Global phase portrait of a degenerate Bogdanov-Takens system with symmetry. Discrete and Continuous Dynamical Systems - B, 2017, 22 (4) : 1273-1293. doi: 10.3934/dcdsb.2017062 [5] Jianfeng Huang, Haihua Liang. Limit cycles of planar system defined by the sum of two quasi-homogeneous vector fields. Discrete and Continuous Dynamical Systems - B, 2021, 26 (2) : 861-873. doi: 10.3934/dcdsb.2020145 [6] P. Yu, M. Han. Twelve limit cycles in a cubic order planar system with $Z_2$- symmetry. Communications on Pure and Applied Analysis, 2004, 3 (3) : 515-526. doi: 10.3934/cpaa.2004.3.515 [7] Jaume Llibre, Claudia Valls. Algebraic limit cycles for quadratic polynomial differential systems. Discrete and Continuous Dynamical Systems - B, 2018, 23 (6) : 2475-2485. doi: 10.3934/dcdsb.2018070 [8] Hong Li. Bifurcation of limit cycles from a Li$\acute{E}$nard system with asymmetric figure eight-loop case. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022033 [9] José Luis Bravo, Manuel Fernández, Ignacio Ojeda, Fernando Sánchez. Uniqueness of limit cycles for quadratic vector fields. Discrete and Continuous Dynamical Systems, 2019, 39 (1) : 483-502. doi: 10.3934/dcds.2019020 [10] Maoan Han, Tonghua Zhang. Some bifurcation methods of finding limit cycles. Mathematical Biosciences & Engineering, 2006, 3 (1) : 67-77. doi: 10.3934/mbe.2006.3.67 [11] Marco Abate, Jasmin Raissy. Formal Poincaré-Dulac renormalization for holomorphic germs. Discrete and Continuous Dynamical Systems, 2013, 33 (5) : 1773-1807. doi: 10.3934/dcds.2013.33.1773 [12] Victoriano Carmona, Soledad Fernández-García, Antonio E. Teruel. Saddle-node of limit cycles in planar piecewise linear systems and applications. Discrete and Continuous Dynamical Systems, 2019, 39 (9) : 5275-5299. doi: 10.3934/dcds.2019215 [13] Song-Mei Huan, Xiao-Song Yang. On the number of limit cycles in general planar piecewise linear systems. Discrete and Continuous Dynamical Systems, 2012, 32 (6) : 2147-2164. doi: 10.3934/dcds.2012.32.2147 [14] Shimin Li, Jaume Llibre. On the limit cycles of planar discontinuous piecewise linear differential systems with a unique equilibrium. Discrete and Continuous Dynamical Systems - B, 2019, 24 (11) : 5885-5901. doi: 10.3934/dcdsb.2019111 [15] Jaume Llibre, Yilei Tang. Limit cycles of discontinuous piecewise quadratic and cubic polynomial perturbations of a linear center. Discrete and Continuous Dynamical Systems - B, 2019, 24 (4) : 1769-1784. doi: 10.3934/dcdsb.2018236 [16] Freddy Dumortier. Sharp upperbounds for the number of large amplitude limit cycles in polynomial Lienard systems. Discrete and Continuous Dynamical Systems, 2012, 32 (5) : 1465-1479. doi: 10.3934/dcds.2012.32.1465 [17] Tao Li, Jaume Llibre. Limit cycles of piecewise polynomial differential systems with the discontinuity line xy = 0. Communications on Pure and Applied Analysis, 2021, 20 (11) : 3887-3909. doi: 10.3934/cpaa.2021136 [18] Yunming Zhou, Desheng Shang, Tonghua Zhang. Seventeen limit cycles bifurcations of a fifth system. Conference Publications, 2007, 2007 (Special) : 1070-1081. doi: 10.3934/proc.2007.2007.1070 [19] Maoan Han, Yuhai Wu, Ping Bi. A new cubic system having eleven limit cycles. Discrete and Continuous Dynamical Systems, 2005, 12 (4) : 675-686. doi: 10.3934/dcds.2005.12.675 [20] Salomón Rebollo-Perdomo, Claudio Vidal. Bifurcation of limit cycles for a family of perturbed Kukles differential systems. Discrete and Continuous Dynamical Systems, 2018, 38 (8) : 4189-4202. doi: 10.3934/dcds.2018182

2020 Impact Factor: 1.392