February  2015, 35(2): 669-701. doi: 10.3934/dcds.2015.35.669

Bifurcation values for a family of planar vector fields of degree five

1. 

Dept. de Matemàtiques, Universitat Autònoma de Barcelona, Edifici C, 08193 Bellaterra, Barcelona, Spain

2. 

Laboratoire de Mathématique et Physique Théorique, C.N.R.S. UMR 7350, Faculté des Sciences et Techniques, Université de Tours, Parc de Grandmont,37200 Tours

Received  February 2013 Revised  February 2014 Published  September 2014

We study the number of limit cycles and the bifurcation diagram in the Poincaré sphere of a one-parameter family of planar differential equations of degree five $\dot {\bf x}=X_b({\bf x})$ which has been already considered in previous papers. We prove that there is a value $b^*>0$ such that the limit cycle exists only when $b\in(0,b^*)$ and that it is unique and hyperbolic by using a rational Dulac function. Moreover we provide an interval of length $27/1000$ where $b^*$ lies. As far as we know the tools used to determine this interval are new and are based on the construction of algebraic curves without contact for the flow of the differential equation. These curves are obtained using analytic information about the separatrices of the infinite critical points of the vector field. To prove that the Bendixson--Dulac Theorem works we develop a method for studying whether one-parameter families of polynomials in two variables do not vanish based on the computation of the so called double discriminant.
Citation: Johanna D. García-Saldaña, Armengol Gasull, Hector Giacomini. Bifurcation values for a family of planar vector fields of degree five. Discrete & Continuous Dynamical Systems - A, 2015, 35 (2) : 669-701. doi: 10.3934/dcds.2015.35.669
References:
[1]

M. J. Álvarez, A. Ferragut and X. Jarque, A survey on the blow up technique,, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 21 (2011), 3103.  doi: 10.1142/S0218127411030416.  Google Scholar

[2]

J. G. Alcazar, J. Schicho and J. R. Sendra, A delineability-based method for computing critical sets of algebraic surfaces,, J. Symbolic Comput., 42 (2007), 678.  doi: 10.1016/j.jsc.2007.02.001.  Google Scholar

[3]

A. A. Andronov, E. A. Leontovich, I. I Gordon and A. G. Maier, Qualitative Theory of Second-Order Dynamic Systems,, John Wiley & Sons, (1973).   Google Scholar

[4]

G. A. Baker and P. Graves-Morris, Padé Approximants,, Second edition, (1996).   Google Scholar

[5]

L. A. Cherkas, The Dulac function for polynomial autonomous systems on a plane,, (Russian) Differ. Uravn., 33 (1997), 689.   Google Scholar

[6]

L. A. Cherkas, A. A. Grin and K. R. Schneider, Dulac-Cherkas functions for generalized Liénard systems,, Electron. J. Qual. Theory Differ. Equ., 35 (2011).   Google Scholar

[7]

C. Chicone, Ordinary Differential Equations with Applications,, Second edition, (2006).   Google Scholar

[8]

D. Cox, J. Little and D. O'Shea, Using Algebraic Geometry,, Graduate Texts in Mathematics, (1998).  doi: 10.1007/978-1-4757-6911-1.  Google Scholar

[9]

G. F. D. Duff, Limit-cycles and rotated vector fields,, Ann. of Math., 57 (1953), 15.  doi: 10.2307/1969724.  Google Scholar

[10]

F. Dumortier, Singularities of vector fields on the plane,, J. Differential Equations, 23 (1977), 53.  doi: 10.1016/0022-0396(77)90136-X.  Google Scholar

[11]

F. Dumortier, J. Llibre and J. C. Artés, Qualitative Theory of Planar Differential Systems,, Springer-Verlag, (2006).   Google Scholar

[12]

A. Gasull and H. Giacomini, A new criterion for controlling the number of limit cycles of some generalized Liénard equations,, J. Differential Equations, 185 (2002), 54.  doi: 10.1006/jdeq.2002.4172.  Google Scholar

[13]

A. Gasull and H. Giacomini, Upper bounds for the number of limit cycles through linear differential equations,, Pacific J. Math., 226 (2006), 277.  doi: 10.2140/pjm.2006.226.277.  Google Scholar

[14]

A. Gasull and H. Giacomini, Upper bounds for the number of limit cycles of some planar polynomial differential systems,, Discrete Contin. Dyn. Syst., 27 (2010), 217.  doi: 10.3934/dcds.2010.27.217.  Google Scholar

[15]

A. Gasull, H. Giacomini and J. Torregrosa, Some results on homoclinic and heteroclinic connections in planar systems,, Nonlinearity, 23 (2010), 2977.  doi: 10.1088/0951-7715/23/12/001.  Google Scholar

[16]

A. Gasull, H. Giacomini and J. Torregrosa, Explicit upper and lower bounds for the traveling wave solutions of Fisher-Kolmogorov type equations,, Discrete Contin. Dyn. Syst., 33 (2013), 3567.  doi: 10.3934/dcds.2013.33.3567.  Google Scholar

[17]

M. Han and T. Qian, Uniqueness of periodic solutions for certain second-order equations,, Acta Math. Sin. (Engl. Ser.), 20 (2004), 247.  doi: 10.1007/s10114-003-0300-4.  Google Scholar

[18]

W. Krandick and K. Mehlhorn, New bounds for the Descartes method,, J. Symbolic Comput., 41 (2006), 49.  doi: 10.1016/j.jsc.2005.02.004.  Google Scholar

[19]

D. Lazard and S. McCallum, Iterated discriminants,, J. Symbolic Comput., 44 (2009), 1176.  doi: 10.1016/j.jsc.2008.05.006.  Google Scholar

[20]

N. G. Lloyd, A note on the number of limit cycles in certain two-dimensional systems,, J. London Math. Soc. (2), 20 (1979), 277.  doi: 10.1112/jlms/s2-20.2.277.  Google Scholar

[21]

A. M. Lyapunov, Stability of Motion,, Mathematics in Science and Engineering, 30 (1966).   Google Scholar

[22]

L. Markus, Global structure of ordinary differential equations in the plane,, Trans. Amer. Math. Soc., 76 (1954), 127.  doi: 10.1090/S0002-9947-1954-0060657-0.  Google Scholar

[23]

D. Neumann, Classification of continuous flows on 2-manifolds,, Proc. Amer. Math. Soc., 48 (1975), 73.  doi: 10.1090/S0002-9939-1975-0356138-6.  Google Scholar

[24]

L. M. Perko, Rotated vector fields and the global behavior of limit cycles for a class of quadratic systems in the plane,, J. Differential Equations, 18 (1975), 63.  doi: 10.1016/0022-0396(75)90081-9.  Google Scholar

[25]

L. M. Perko, Global families of limit cycles of planar analytic systems,, Trans. Amer. Math. Soc., 322 (1990), 627.  doi: 10.1090/S0002-9947-1990-0998357-4.  Google Scholar

[26]

L. M. Perko, Bifurcation of limit cycles,, in Bifurcations of Planar Vector Fields (Luminy, (1989), 315.  doi: 10.1007/BFb0085398.  Google Scholar

[27]

L. M. Perko, Differential Equations and Dynamical Systems,, Second edition, (1996).  doi: 10.1007/978-1-4684-0249-0.  Google Scholar

[28]

J. Pettigrew and J. A. G. Roberts, Characterizing singular curves in parametrized families of biquadratics,, J. Phys. A, 41 (2008).  doi: 10.1088/1751-8113/41/11/115203.  Google Scholar

[29]

J. Stoer and R. Bulirsch, Introduction to Numerical Analysis,, Translated from the German by R. Bartels, (1980).   Google Scholar

[30]

X. Wang, J. Jiang and P. Yan, Analysis of global bifurcation for a class of systems of degree five,, J. Math. Anal. Appl., 222 (1998), 305.  doi: 10.1006/jmaa.1997.5546.  Google Scholar

[31]

K. Yamato, An effective method of counting the number of limit cycles,, Nagoya Math. J., 76 (1979), 35.   Google Scholar

show all references

References:
[1]

M. J. Álvarez, A. Ferragut and X. Jarque, A survey on the blow up technique,, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 21 (2011), 3103.  doi: 10.1142/S0218127411030416.  Google Scholar

[2]

J. G. Alcazar, J. Schicho and J. R. Sendra, A delineability-based method for computing critical sets of algebraic surfaces,, J. Symbolic Comput., 42 (2007), 678.  doi: 10.1016/j.jsc.2007.02.001.  Google Scholar

[3]

A. A. Andronov, E. A. Leontovich, I. I Gordon and A. G. Maier, Qualitative Theory of Second-Order Dynamic Systems,, John Wiley & Sons, (1973).   Google Scholar

[4]

G. A. Baker and P. Graves-Morris, Padé Approximants,, Second edition, (1996).   Google Scholar

[5]

L. A. Cherkas, The Dulac function for polynomial autonomous systems on a plane,, (Russian) Differ. Uravn., 33 (1997), 689.   Google Scholar

[6]

L. A. Cherkas, A. A. Grin and K. R. Schneider, Dulac-Cherkas functions for generalized Liénard systems,, Electron. J. Qual. Theory Differ. Equ., 35 (2011).   Google Scholar

[7]

C. Chicone, Ordinary Differential Equations with Applications,, Second edition, (2006).   Google Scholar

[8]

D. Cox, J. Little and D. O'Shea, Using Algebraic Geometry,, Graduate Texts in Mathematics, (1998).  doi: 10.1007/978-1-4757-6911-1.  Google Scholar

[9]

G. F. D. Duff, Limit-cycles and rotated vector fields,, Ann. of Math., 57 (1953), 15.  doi: 10.2307/1969724.  Google Scholar

[10]

F. Dumortier, Singularities of vector fields on the plane,, J. Differential Equations, 23 (1977), 53.  doi: 10.1016/0022-0396(77)90136-X.  Google Scholar

[11]

F. Dumortier, J. Llibre and J. C. Artés, Qualitative Theory of Planar Differential Systems,, Springer-Verlag, (2006).   Google Scholar

[12]

A. Gasull and H. Giacomini, A new criterion for controlling the number of limit cycles of some generalized Liénard equations,, J. Differential Equations, 185 (2002), 54.  doi: 10.1006/jdeq.2002.4172.  Google Scholar

[13]

A. Gasull and H. Giacomini, Upper bounds for the number of limit cycles through linear differential equations,, Pacific J. Math., 226 (2006), 277.  doi: 10.2140/pjm.2006.226.277.  Google Scholar

[14]

A. Gasull and H. Giacomini, Upper bounds for the number of limit cycles of some planar polynomial differential systems,, Discrete Contin. Dyn. Syst., 27 (2010), 217.  doi: 10.3934/dcds.2010.27.217.  Google Scholar

[15]

A. Gasull, H. Giacomini and J. Torregrosa, Some results on homoclinic and heteroclinic connections in planar systems,, Nonlinearity, 23 (2010), 2977.  doi: 10.1088/0951-7715/23/12/001.  Google Scholar

[16]

A. Gasull, H. Giacomini and J. Torregrosa, Explicit upper and lower bounds for the traveling wave solutions of Fisher-Kolmogorov type equations,, Discrete Contin. Dyn. Syst., 33 (2013), 3567.  doi: 10.3934/dcds.2013.33.3567.  Google Scholar

[17]

M. Han and T. Qian, Uniqueness of periodic solutions for certain second-order equations,, Acta Math. Sin. (Engl. Ser.), 20 (2004), 247.  doi: 10.1007/s10114-003-0300-4.  Google Scholar

[18]

W. Krandick and K. Mehlhorn, New bounds for the Descartes method,, J. Symbolic Comput., 41 (2006), 49.  doi: 10.1016/j.jsc.2005.02.004.  Google Scholar

[19]

D. Lazard and S. McCallum, Iterated discriminants,, J. Symbolic Comput., 44 (2009), 1176.  doi: 10.1016/j.jsc.2008.05.006.  Google Scholar

[20]

N. G. Lloyd, A note on the number of limit cycles in certain two-dimensional systems,, J. London Math. Soc. (2), 20 (1979), 277.  doi: 10.1112/jlms/s2-20.2.277.  Google Scholar

[21]

A. M. Lyapunov, Stability of Motion,, Mathematics in Science and Engineering, 30 (1966).   Google Scholar

[22]

L. Markus, Global structure of ordinary differential equations in the plane,, Trans. Amer. Math. Soc., 76 (1954), 127.  doi: 10.1090/S0002-9947-1954-0060657-0.  Google Scholar

[23]

D. Neumann, Classification of continuous flows on 2-manifolds,, Proc. Amer. Math. Soc., 48 (1975), 73.  doi: 10.1090/S0002-9939-1975-0356138-6.  Google Scholar

[24]

L. M. Perko, Rotated vector fields and the global behavior of limit cycles for a class of quadratic systems in the plane,, J. Differential Equations, 18 (1975), 63.  doi: 10.1016/0022-0396(75)90081-9.  Google Scholar

[25]

L. M. Perko, Global families of limit cycles of planar analytic systems,, Trans. Amer. Math. Soc., 322 (1990), 627.  doi: 10.1090/S0002-9947-1990-0998357-4.  Google Scholar

[26]

L. M. Perko, Bifurcation of limit cycles,, in Bifurcations of Planar Vector Fields (Luminy, (1989), 315.  doi: 10.1007/BFb0085398.  Google Scholar

[27]

L. M. Perko, Differential Equations and Dynamical Systems,, Second edition, (1996).  doi: 10.1007/978-1-4684-0249-0.  Google Scholar

[28]

J. Pettigrew and J. A. G. Roberts, Characterizing singular curves in parametrized families of biquadratics,, J. Phys. A, 41 (2008).  doi: 10.1088/1751-8113/41/11/115203.  Google Scholar

[29]

J. Stoer and R. Bulirsch, Introduction to Numerical Analysis,, Translated from the German by R. Bartels, (1980).   Google Scholar

[30]

X. Wang, J. Jiang and P. Yan, Analysis of global bifurcation for a class of systems of degree five,, J. Math. Anal. Appl., 222 (1998), 305.  doi: 10.1006/jmaa.1997.5546.  Google Scholar

[31]

K. Yamato, An effective method of counting the number of limit cycles,, Nagoya Math. J., 76 (1979), 35.   Google Scholar

[1]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[2]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[3]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[4]

Adrian Constantin, Darren G. Crowdy, Vikas S. Krishnamurthy, Miles H. Wheeler. Stuart-type polar vortices on a rotating sphere. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 201-215. doi: 10.3934/dcds.2020263

[5]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[6]

Tian Ma, Shouhong Wang. Topological phase transition III: Solar surface eruptions and sunspots. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020350

[7]

Susmita Sadhu. Complex oscillatory patterns near singular Hopf bifurcation in a two-timescale ecosystem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020342

[8]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[9]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[10]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[11]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[12]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[13]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[14]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[15]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[16]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

[17]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[18]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[19]

Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020341

[20]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (42)
  • HTML views (0)
  • Cited by (8)

[Back to Top]