February  2015, 35(2): 725-740. doi: 10.3934/dcds.2015.35.725

Localization of mixing property via Furstenberg families

1. 

Department of Mathematics, Shantou University, Shantou, Guangdong 515063, China

Received  November 2013 Revised  April 2014 Published  September 2014

This paper is devoted to studying the localization of mixing property via Furstenberg families. It is shown that there exists some $\mathcal{F}_{pubd}$-mixing set in every dynamical system with positive entropy, and some $\mathcal{F}_{ps}$-mixing set in every non-PI minimal system.
Citation: Jian Li. Localization of mixing property via Furstenberg families. Discrete & Continuous Dynamical Systems - A, 2015, 35 (2) : 725-740. doi: 10.3934/dcds.2015.35.725
References:
[1]

E. Akin, Recurrence in Topological Dynamics, Furstenberg Families and Ellis Actions,, The University Series in Mathematics, (1997). doi: 10.1007/978-1-4757-2668-8.

[2]

E. Akin, Lectures on Cantor and Mycielski sets for dynamical systems,, in Chapel Hill Ergodic Theory Workshops, (2004), 21. doi: 10.1090/conm/356/06496.

[3]

E. Akin, E. Glasner, W. Huang, S. Shao and X. Ye, Sufficient conditions under which a transitive system is chaotic,, Ergod. Th. and Dynam. Sys., 30 (2010), 1277. doi: 10.1017/S0143385709000753.

[4]

F. Blanchard, Fully positive topological entropy and topological mixing,, Symbolic Dynamics and its Applications (New Haven, (1991), 95. doi: 10.1090/conm/135/1185082.

[5]

F. Blanchard, A disjointness theorem involving topological entropy,, Bull. Soc. Math. France, 121 (1993), 465.

[6]

F. Blanchard, B. Host, A. Maass, S. Martinez and D. Rudolph, Entropy pairs for a measure,, Ergod. Theory Dynam. Syst., 15 (1995), 621. doi: 10.1017/S0143385700008579.

[7]

F. Blanchard and W. Huang, Entropy sets, weakly mixing sets and entropy capacity,, Discrete Contin. Dyn. Syst., 20 (2008), 275.

[8]

D. Dou, X. Ye and G. Zhang, Entropy sequence and maximal entropy sets,, Nonlinearity, 19 (2006), 53. doi: 10.1088/0951-7715/19/1/004.

[9]

R. Ellis, Extending continuous functions on zero-dimensional spaces,, Math. Ann., 186 (1970), 114. doi: 10.1007/BF01350686.

[10]

R. Ellis, S. Glasner and L. Shapiro, Proximal-Isometric Flows,, Advances in Math., 17 (1975), 213. doi: 10.1016/0001-8708(75)90093-6.

[11]

H. Furstenberg, Recurrence in Ergodic Theory and Combinatorial Number Theory,, M. B. Porter Lectures, (1981).

[12]

W. H. Gottschalk and G. A. Hedlund, Topological Dynamics,, Amer. Math. Soc. Collooquium Publications, (1955).

[13]

E. Glasner, A simple characterization of the set of $\mu$-entropy pairs and applications,, Israel J. Math., 102 (1997), 13. doi: 10.1007/BF02773793.

[14]

E. Glasner, Topological weak mixing and quasi-Bohr systems,, Israel J. Math., 148 (2005), 277. doi: 10.1007/BF02775440.

[15]

E. Glasner and X. Ye, Local entropy theory,, Ergodic Theory and Dynam. Systems, 29 (2009), 321. doi: 10.1017/S0143385708080309.

[16]

E. Glasner, Classifying dynamical systems by their recurrence properties,, Topol. Methods Nonlinear Anal., 24 (2004), 21.

[17]

W. Huang, S. Shao and X. Ye, Mixing and proximal cells along a sequences,, Nonlinearity, 17 (2004), 1245. doi: 10.1088/0951-7715/17/4/006.

[18]

W. Huang and X. Ye, Dynamical systems disjoint from and minimal system,, Tran. Amer. Math. Soc., 357 (2005), 669. doi: 10.1090/S0002-9947-04-03540-8.

[19]

W. Huang and X. Ye, Topological complexity, return times and weak disjointness,, Ergod. Thero. Dyn. Syst., 24 (2004), 825. doi: 10.1017/S0143385703000543.

[20]

W. Huang and X. Ye, A local variational relation and applications,, Israel J. Math., 151 (2006), 237. doi: 10.1007/BF02777364.

[21]

A. Illanes and S. Nadler, Hyperspaces,, Fundamentals and Recent Advances, (1999).

[22]

J. Li, Transitive points via Furstenberg family,, Topology Appl., 158 (2011), 2221. doi: 10.1016/j.topol.2011.07.013.

[23]

J. Li, P. Oprocha and G. Zhang, On recurrence over subsets and weak mixing,, preprint, (2013).

[24]

J. Mycielski, Independent sets in topological algebras,, Fund. Math., 55 (1964), 139.

[25]

P. Oprocha, Coherent lists and chaotic sets,, Discrete Continuous Dynam. Systems, 31 (2011), 797. doi: 10.3934/dcds.2011.31.797.

[26]

P. Oprocha and G. Zhang, On local aspects of topological weak mixing in dimension one and beyond,, Studia Math., 202 (2011), 261. doi: 10.4064/sm202-3-4.

[27]

P. Oprocha and G. Zhang, On sets with recurrence properties, their topological structure and entropy,, Top. App., 159 (2012), 1767. doi: 10.1016/j.topol.2011.04.020.

[28]

P. Oprocha and G. Zhang, On weak product recurrence and synchroniztion of return times,, Adv. Math., 244 (2013), 395. doi: 10.1016/j.aim.2013.05.006.

[29]

P. Walters, An Introduction to Ergodic Theory,, Graduate Texts in Mathematics, (1982).

[30]

J. Xiong and Z. Yang, Chaos caused by a toplogical mixing map,, in Dynamical Systems and Related Topics (Nagoya, (1990), 550.

show all references

References:
[1]

E. Akin, Recurrence in Topological Dynamics, Furstenberg Families and Ellis Actions,, The University Series in Mathematics, (1997). doi: 10.1007/978-1-4757-2668-8.

[2]

E. Akin, Lectures on Cantor and Mycielski sets for dynamical systems,, in Chapel Hill Ergodic Theory Workshops, (2004), 21. doi: 10.1090/conm/356/06496.

[3]

E. Akin, E. Glasner, W. Huang, S. Shao and X. Ye, Sufficient conditions under which a transitive system is chaotic,, Ergod. Th. and Dynam. Sys., 30 (2010), 1277. doi: 10.1017/S0143385709000753.

[4]

F. Blanchard, Fully positive topological entropy and topological mixing,, Symbolic Dynamics and its Applications (New Haven, (1991), 95. doi: 10.1090/conm/135/1185082.

[5]

F. Blanchard, A disjointness theorem involving topological entropy,, Bull. Soc. Math. France, 121 (1993), 465.

[6]

F. Blanchard, B. Host, A. Maass, S. Martinez and D. Rudolph, Entropy pairs for a measure,, Ergod. Theory Dynam. Syst., 15 (1995), 621. doi: 10.1017/S0143385700008579.

[7]

F. Blanchard and W. Huang, Entropy sets, weakly mixing sets and entropy capacity,, Discrete Contin. Dyn. Syst., 20 (2008), 275.

[8]

D. Dou, X. Ye and G. Zhang, Entropy sequence and maximal entropy sets,, Nonlinearity, 19 (2006), 53. doi: 10.1088/0951-7715/19/1/004.

[9]

R. Ellis, Extending continuous functions on zero-dimensional spaces,, Math. Ann., 186 (1970), 114. doi: 10.1007/BF01350686.

[10]

R. Ellis, S. Glasner and L. Shapiro, Proximal-Isometric Flows,, Advances in Math., 17 (1975), 213. doi: 10.1016/0001-8708(75)90093-6.

[11]

H. Furstenberg, Recurrence in Ergodic Theory and Combinatorial Number Theory,, M. B. Porter Lectures, (1981).

[12]

W. H. Gottschalk and G. A. Hedlund, Topological Dynamics,, Amer. Math. Soc. Collooquium Publications, (1955).

[13]

E. Glasner, A simple characterization of the set of $\mu$-entropy pairs and applications,, Israel J. Math., 102 (1997), 13. doi: 10.1007/BF02773793.

[14]

E. Glasner, Topological weak mixing and quasi-Bohr systems,, Israel J. Math., 148 (2005), 277. doi: 10.1007/BF02775440.

[15]

E. Glasner and X. Ye, Local entropy theory,, Ergodic Theory and Dynam. Systems, 29 (2009), 321. doi: 10.1017/S0143385708080309.

[16]

E. Glasner, Classifying dynamical systems by their recurrence properties,, Topol. Methods Nonlinear Anal., 24 (2004), 21.

[17]

W. Huang, S. Shao and X. Ye, Mixing and proximal cells along a sequences,, Nonlinearity, 17 (2004), 1245. doi: 10.1088/0951-7715/17/4/006.

[18]

W. Huang and X. Ye, Dynamical systems disjoint from and minimal system,, Tran. Amer. Math. Soc., 357 (2005), 669. doi: 10.1090/S0002-9947-04-03540-8.

[19]

W. Huang and X. Ye, Topological complexity, return times and weak disjointness,, Ergod. Thero. Dyn. Syst., 24 (2004), 825. doi: 10.1017/S0143385703000543.

[20]

W. Huang and X. Ye, A local variational relation and applications,, Israel J. Math., 151 (2006), 237. doi: 10.1007/BF02777364.

[21]

A. Illanes and S. Nadler, Hyperspaces,, Fundamentals and Recent Advances, (1999).

[22]

J. Li, Transitive points via Furstenberg family,, Topology Appl., 158 (2011), 2221. doi: 10.1016/j.topol.2011.07.013.

[23]

J. Li, P. Oprocha and G. Zhang, On recurrence over subsets and weak mixing,, preprint, (2013).

[24]

J. Mycielski, Independent sets in topological algebras,, Fund. Math., 55 (1964), 139.

[25]

P. Oprocha, Coherent lists and chaotic sets,, Discrete Continuous Dynam. Systems, 31 (2011), 797. doi: 10.3934/dcds.2011.31.797.

[26]

P. Oprocha and G. Zhang, On local aspects of topological weak mixing in dimension one and beyond,, Studia Math., 202 (2011), 261. doi: 10.4064/sm202-3-4.

[27]

P. Oprocha and G. Zhang, On sets with recurrence properties, their topological structure and entropy,, Top. App., 159 (2012), 1767. doi: 10.1016/j.topol.2011.04.020.

[28]

P. Oprocha and G. Zhang, On weak product recurrence and synchroniztion of return times,, Adv. Math., 244 (2013), 395. doi: 10.1016/j.aim.2013.05.006.

[29]

P. Walters, An Introduction to Ergodic Theory,, Graduate Texts in Mathematics, (1982).

[30]

J. Xiong and Z. Yang, Chaos caused by a toplogical mixing map,, in Dynamical Systems and Related Topics (Nagoya, (1990), 550.

[1]

François Blanchard, Wen Huang. Entropy sets, weakly mixing sets and entropy capacity. Discrete & Continuous Dynamical Systems - A, 2008, 20 (2) : 275-311. doi: 10.3934/dcds.2008.20.275

[2]

Lidong Wang, Hui Wang, Guifeng Huang. Minimal sets and $\omega$-chaos in expansive systems with weak specification property. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 1231-1238. doi: 10.3934/dcds.2015.35.1231

[3]

Tao Yu. Measurable sensitivity via Furstenberg families. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4543-4563. doi: 10.3934/dcds.2017194

[4]

Frank Blume. Minimal rates of entropy convergence for rank one systems. Discrete & Continuous Dynamical Systems - A, 2000, 6 (4) : 773-796. doi: 10.3934/dcds.2000.6.773

[5]

Piotr Oprocha. Double minimality, entropy and disjointness with all minimal systems. Discrete & Continuous Dynamical Systems - A, 2019, 39 (1) : 263-275. doi: 10.3934/dcds.2019011

[6]

Jinjun Li, Min Wu. Generic property of irregular sets in systems satisfying the specification property. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 635-645. doi: 10.3934/dcds.2014.34.635

[7]

Makoto Mori. Higher order mixing property of piecewise linear transformations. Discrete & Continuous Dynamical Systems - A, 2000, 6 (4) : 915-934. doi: 10.3934/dcds.2000.6.915

[8]

Matúš Dirbák. Minimal skew products with hypertransitive or mixing properties. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1657-1674. doi: 10.3934/dcds.2012.32.1657

[9]

Piotr Oprocha, Paweł Potorski. Topological mixing, knot points and bounds of topological entropy. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3547-3564. doi: 10.3934/dcdsb.2015.20.3547

[10]

Boju Jiang, Jaume Llibre. Minimal sets of periods for torus maps. Discrete & Continuous Dynamical Systems - A, 1998, 4 (2) : 301-320. doi: 10.3934/dcds.1998.4.301

[11]

Krzysztof Frączek, M. Lemańczyk, E. Lesigne. Mild mixing property for special flows under piecewise constant functions. Discrete & Continuous Dynamical Systems - A, 2007, 19 (4) : 691-710. doi: 10.3934/dcds.2007.19.691

[12]

Adriano Da Silva, Christoph Kawan. Invariance entropy of hyperbolic control sets. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 97-136. doi: 10.3934/dcds.2016.36.97

[13]

Mario Roldan. Hyperbolic sets and entropy at the homological level. Discrete & Continuous Dynamical Systems - A, 2016, 36 (6) : 3417-3433. doi: 10.3934/dcds.2016.36.3417

[14]

Lin Wang, Yujun Zhu. Center specification property and entropy for partially hyperbolic diffeomorphisms. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 469-479. doi: 10.3934/dcds.2016.36.469

[15]

Eva Glasmachers, Gerhard Knieper, Carlos Ogouyandjou, Jan Philipp Schröder. Topological entropy of minimal geodesics and volume growth on surfaces. Journal of Modern Dynamics, 2014, 8 (1) : 75-91. doi: 10.3934/jmd.2014.8.75

[16]

Luiz Felipe Nobili França. Partially hyperbolic sets with a dynamically minimal lamination. Discrete & Continuous Dynamical Systems - A, 2018, 38 (6) : 2717-2729. doi: 10.3934/dcds.2018114

[17]

Jaume Llibre, Ricardo Miranda Martins, Marco Antonio Teixeira. On the birth of minimal sets for perturbed reversible vector fields. Discrete & Continuous Dynamical Systems - A, 2011, 31 (3) : 763-777. doi: 10.3934/dcds.2011.31.763

[18]

Ronald A. Knight. Compact minimal sets in continuous recurrent flows. Conference Publications, 1998, 1998 (Special) : 397-407. doi: 10.3934/proc.1998.1998.397

[19]

Jingjun Bao. New families of strictly optimal frequency hopping sequence sets. Advances in Mathematics of Communications, 2018, 12 (2) : 387-413. doi: 10.3934/amc.2018024

[20]

Hiromichi Nakayama, Takeo Noda. Minimal sets and chain recurrent sets of projective flows induced from minimal flows on $3$-manifolds. Discrete & Continuous Dynamical Systems - A, 2005, 12 (4) : 629-638. doi: 10.3934/dcds.2005.12.629

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]