January  2015, 35(1): 73-98. doi: 10.3934/dcds.2015.35.73

On the modeling of moving populations through set evolution equations

1. 

INdAM Unit, University of Brescia, Via Branze 38, 25123 Brescia, Italy

2. 

RheinMain University of Applied Sciences, Kurt-Schumacher-Ring 18, 65197 Wiesbaden, Germany

3. 

Institute for System Dynamics and Control Theory, 134 Lermontova st., 664033 Irkutsk, Russian Federation

Received  December 2013 Revised  March 2014 Published  August 2014

We introduce a class of set evolution equations that can be used to describe population's movements as well as various instances of individual-population interactions. Optimal control/management problems can be formalized and tackled in this framework. A rigorous analytical structure is established and the basic well posedness results are obtained. Several examples show possible applications and their numerical integrations display possible qualitative behaviors of solutions.
Citation: Rinaldo M. Colombo, Thomas Lorenz, Nikolay I. Pogodaev. On the modeling of moving populations through set evolution equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 73-98. doi: 10.3934/dcds.2015.35.73
References:
[1]

O. Alvarez, P. Cardaliaguet and R. Monneau, Existence and uniqueness for dislocation dynamics with nonnegative velocity,, Interfaces Free Bound., 7 (2005), 415. doi: 10.4171/IFB/131. Google Scholar

[2]

J.-P. Aubin, Mutational equations in metric spaces,, Set-Valued Anal., 1 (1993), 3. doi: 10.1007/BF01039289. Google Scholar

[3]

J.-P. Aubin, Mutational and Morphological Analysis,, Systems & Control: Foundations & Applications, (1999). doi: 10.1007/978-1-4612-1576-9. Google Scholar

[4]

J.-P. Aubin and A. Cellina, Differential Inclusions. Set-valued Maps and Viability Theory,, Grundlehren der mathematischen Wissenschaften, (1984). doi: 10.1007/978-3-642-69512-4. Google Scholar

[5]

J.-P. Aubin and H. Frankowska, Set-valued Analysis,, Systems & Control: Foundations & Applications, (1990). Google Scholar

[6]

G. Beer, Topologies on Closed and Closed Convex Sets,, Mathematics and Its Applications, (1993). Google Scholar

[7]

W.-J. Beyn and J. Rieger, Numerical fixed grid methods for differential inclusions,, Computing, 81 (2007), 91. doi: 10.1007/s00607-007-0240-4. Google Scholar

[8]

A. Bressan and D. Zhang, Control problems for a class of set valued evolutions,, Set-Valued Var. Anal., 20 (2012), 581. doi: 10.1007/s11228-012-0204-5. Google Scholar

[9]

P. Cannarsa and P. Cardaliaguet, Perimeter estimates for reachable sets of control systems,, J. Convex Anal., 13 (2006), 253. Google Scholar

[10]

P. Cannarsa and H. Frankowska, Interior sphere property of attainable sets and time optimal control problems,, ESAIM Control Optim. Calc. Var., 12 (2006), 350. doi: 10.1051/cocv:2006002. Google Scholar

[11]

P. Cannarsa and C. Sinestrari, Semiconcave Functions, Hamilton-Jacobi Equations, and Optimal Control,, Progress in Nonlinear Differential Equations and their Applications, (2004). Google Scholar

[12]

J. A. Carrillo, R. M. Colombo, P. Gwiazda and A. Ulikowska, Structured populations, cell growth and measure valued balance laws,, J. Differential Equations, 252 (2012), 3245. doi: 10.1016/j.jde.2011.11.003. Google Scholar

[13]

G. Colombo and K. T. Nguyen, On the structure of the minimum time function,, SIAM J. Control Optim., 48 (2010), 4776. doi: 10.1137/090774549. Google Scholar

[14]

R. M. Colombo and G. Guerra, Balance laws as quasidifferential equations in metric spaces,, in Hyperbolic Problems: Theory, (2009), 527. doi: 10.1090/psapm/067.2/2605248. Google Scholar

[15]

R. M. Colombo and G. Guerra, Differential equations in metric spaces with applications,, Discrete Contin. Dyn. Syst., 23 (2009), 733. doi: 10.3934/dcds.2009.23.733. Google Scholar

[16]

R. M. Colombo and M. Lécureux-Mercier, An analytical framework to describe the interactions between individuals and a continuum,, J. Nonlinear Sci., 22 (2012), 39. doi: 10.1007/s00332-011-9107-0. Google Scholar

[17]

R. M. Colombo, T. Lorenz and N. Pogodaev, Fixed grid method for a class of set evolution equations,, in preparation., (). Google Scholar

[18]

R. M. Colombo and N. Pogodaev, Confinement strategies in a model for the interaction between individuals and a continuum,, SIAM J. Appl. Dyn. Syst., 11 (2012), 741. doi: 10.1137/110854321. Google Scholar

[19]

R. M. Colombo and N. Pogodaev, On the control of moving sets: Positive and negative confinement results,, SIAM J. Control Optim., 51 (2013), 380. doi: 10.1137/12087791X. Google Scholar

[20]

M. C. Delfour and J.-P. Zolésio, Shapes and Geometries. Metrics, Analysis, Differential Calculus, and Optimization,, Second edition, (2011). doi: 10.1137/1.9780898719826. Google Scholar

[21]

H. Federer, Geometric Measure Theory,, Die Grundlehren der mathematischen Wissenschaften, (1969). Google Scholar

[22]

M. Giaquinta and G. Modica, Mathematical Analysis: Foundations and Advanced Techniques for Functions of Several Variables,, Springer, (2011). Google Scholar

[23]

J. Grimm and W. Grimm, Deutsche Sagen,, Second edition, (1865). Google Scholar

[24]

P. Gwiazda, T. Lorenz and A. Marciniak-Czochra, A nonlinear structured population model: Lipschitz continuity of measure-valued solutions with respect to model ingredients,, J. Differential Equations, 248 (2010), 2703. doi: 10.1016/j.jde.2010.02.010. Google Scholar

[25]

T. Lorenz, Boundary regularity of reachable sets of control systems,, Systems Control Lett., 54 (2005), 919. doi: 10.1016/j.sysconle.2005.02.006. Google Scholar

[26]

T. Lorenz, Morphological control problems with state constraints,, SIAM J. Control Optim., 48 (2010), 5510. doi: 10.1137/090752183. Google Scholar

[27]

T. Lorenz, Mutational Analysis. A Joint Framework for Cauchy Problems in and Beyond Vector Spaces,, Lecture Notes in Mathematics, (1996). doi: 10.1007/978-3-642-12471-6. Google Scholar

[28]

S. Maniglia, Probabilistic representation and uniqueness results for measure-valued solutions of transport equations,, J. Math. Pures Appl. (9), 87 (2007), 601. doi: 10.1016/j.matpur.2007.04.001. Google Scholar

[29]

C. Nour, R. J. Stern and J. Takche, The union of uniform closed balls conjecture,, Control Cybernet., 38 (2009), 1525. Google Scholar

[30]

C. Nour, R. J. Stern and J. Takche, Validity of the union of uniform closed balls conjecture,, J. Convex Anal., 18 (2011), 589. Google Scholar

[31]

C. Nour and J. Takche, On the union of closed balls property,, J. Optim. Theory Appl., 155 (2012), 376. doi: 10.1007/s10957-012-0068-8. Google Scholar

[32]

B. Piccoli and F. Rossi, Generalized Wasserstein distance and its application to transport equations with source,, , (2012). doi: 10.1007/s00205-013-0669-x. Google Scholar

[33]

B. Piccoli and A. Tosin, Time-evolving measures and macroscopic modeling of pedestrian flow,, Arch. Ration. Mech. Anal., 199 (2011), 707. doi: 10.1007/s00205-010-0366-y. Google Scholar

show all references

References:
[1]

O. Alvarez, P. Cardaliaguet and R. Monneau, Existence and uniqueness for dislocation dynamics with nonnegative velocity,, Interfaces Free Bound., 7 (2005), 415. doi: 10.4171/IFB/131. Google Scholar

[2]

J.-P. Aubin, Mutational equations in metric spaces,, Set-Valued Anal., 1 (1993), 3. doi: 10.1007/BF01039289. Google Scholar

[3]

J.-P. Aubin, Mutational and Morphological Analysis,, Systems & Control: Foundations & Applications, (1999). doi: 10.1007/978-1-4612-1576-9. Google Scholar

[4]

J.-P. Aubin and A. Cellina, Differential Inclusions. Set-valued Maps and Viability Theory,, Grundlehren der mathematischen Wissenschaften, (1984). doi: 10.1007/978-3-642-69512-4. Google Scholar

[5]

J.-P. Aubin and H. Frankowska, Set-valued Analysis,, Systems & Control: Foundations & Applications, (1990). Google Scholar

[6]

G. Beer, Topologies on Closed and Closed Convex Sets,, Mathematics and Its Applications, (1993). Google Scholar

[7]

W.-J. Beyn and J. Rieger, Numerical fixed grid methods for differential inclusions,, Computing, 81 (2007), 91. doi: 10.1007/s00607-007-0240-4. Google Scholar

[8]

A. Bressan and D. Zhang, Control problems for a class of set valued evolutions,, Set-Valued Var. Anal., 20 (2012), 581. doi: 10.1007/s11228-012-0204-5. Google Scholar

[9]

P. Cannarsa and P. Cardaliaguet, Perimeter estimates for reachable sets of control systems,, J. Convex Anal., 13 (2006), 253. Google Scholar

[10]

P. Cannarsa and H. Frankowska, Interior sphere property of attainable sets and time optimal control problems,, ESAIM Control Optim. Calc. Var., 12 (2006), 350. doi: 10.1051/cocv:2006002. Google Scholar

[11]

P. Cannarsa and C. Sinestrari, Semiconcave Functions, Hamilton-Jacobi Equations, and Optimal Control,, Progress in Nonlinear Differential Equations and their Applications, (2004). Google Scholar

[12]

J. A. Carrillo, R. M. Colombo, P. Gwiazda and A. Ulikowska, Structured populations, cell growth and measure valued balance laws,, J. Differential Equations, 252 (2012), 3245. doi: 10.1016/j.jde.2011.11.003. Google Scholar

[13]

G. Colombo and K. T. Nguyen, On the structure of the minimum time function,, SIAM J. Control Optim., 48 (2010), 4776. doi: 10.1137/090774549. Google Scholar

[14]

R. M. Colombo and G. Guerra, Balance laws as quasidifferential equations in metric spaces,, in Hyperbolic Problems: Theory, (2009), 527. doi: 10.1090/psapm/067.2/2605248. Google Scholar

[15]

R. M. Colombo and G. Guerra, Differential equations in metric spaces with applications,, Discrete Contin. Dyn. Syst., 23 (2009), 733. doi: 10.3934/dcds.2009.23.733. Google Scholar

[16]

R. M. Colombo and M. Lécureux-Mercier, An analytical framework to describe the interactions between individuals and a continuum,, J. Nonlinear Sci., 22 (2012), 39. doi: 10.1007/s00332-011-9107-0. Google Scholar

[17]

R. M. Colombo, T. Lorenz and N. Pogodaev, Fixed grid method for a class of set evolution equations,, in preparation., (). Google Scholar

[18]

R. M. Colombo and N. Pogodaev, Confinement strategies in a model for the interaction between individuals and a continuum,, SIAM J. Appl. Dyn. Syst., 11 (2012), 741. doi: 10.1137/110854321. Google Scholar

[19]

R. M. Colombo and N. Pogodaev, On the control of moving sets: Positive and negative confinement results,, SIAM J. Control Optim., 51 (2013), 380. doi: 10.1137/12087791X. Google Scholar

[20]

M. C. Delfour and J.-P. Zolésio, Shapes and Geometries. Metrics, Analysis, Differential Calculus, and Optimization,, Second edition, (2011). doi: 10.1137/1.9780898719826. Google Scholar

[21]

H. Federer, Geometric Measure Theory,, Die Grundlehren der mathematischen Wissenschaften, (1969). Google Scholar

[22]

M. Giaquinta and G. Modica, Mathematical Analysis: Foundations and Advanced Techniques for Functions of Several Variables,, Springer, (2011). Google Scholar

[23]

J. Grimm and W. Grimm, Deutsche Sagen,, Second edition, (1865). Google Scholar

[24]

P. Gwiazda, T. Lorenz and A. Marciniak-Czochra, A nonlinear structured population model: Lipschitz continuity of measure-valued solutions with respect to model ingredients,, J. Differential Equations, 248 (2010), 2703. doi: 10.1016/j.jde.2010.02.010. Google Scholar

[25]

T. Lorenz, Boundary regularity of reachable sets of control systems,, Systems Control Lett., 54 (2005), 919. doi: 10.1016/j.sysconle.2005.02.006. Google Scholar

[26]

T. Lorenz, Morphological control problems with state constraints,, SIAM J. Control Optim., 48 (2010), 5510. doi: 10.1137/090752183. Google Scholar

[27]

T. Lorenz, Mutational Analysis. A Joint Framework for Cauchy Problems in and Beyond Vector Spaces,, Lecture Notes in Mathematics, (1996). doi: 10.1007/978-3-642-12471-6. Google Scholar

[28]

S. Maniglia, Probabilistic representation and uniqueness results for measure-valued solutions of transport equations,, J. Math. Pures Appl. (9), 87 (2007), 601. doi: 10.1016/j.matpur.2007.04.001. Google Scholar

[29]

C. Nour, R. J. Stern and J. Takche, The union of uniform closed balls conjecture,, Control Cybernet., 38 (2009), 1525. Google Scholar

[30]

C. Nour, R. J. Stern and J. Takche, Validity of the union of uniform closed balls conjecture,, J. Convex Anal., 18 (2011), 589. Google Scholar

[31]

C. Nour and J. Takche, On the union of closed balls property,, J. Optim. Theory Appl., 155 (2012), 376. doi: 10.1007/s10957-012-0068-8. Google Scholar

[32]

B. Piccoli and F. Rossi, Generalized Wasserstein distance and its application to transport equations with source,, , (2012). doi: 10.1007/s00205-013-0669-x. Google Scholar

[33]

B. Piccoli and A. Tosin, Time-evolving measures and macroscopic modeling of pedestrian flow,, Arch. Ration. Mech. Anal., 199 (2011), 707. doi: 10.1007/s00205-010-0366-y. Google Scholar

[1]

Elimhan N. Mahmudov. Optimal control of evolution differential inclusions with polynomial linear differential operators. Evolution Equations & Control Theory, 2019, 8 (3) : 603-619. doi: 10.3934/eect.2019028

[2]

Rémi Carles, Clotilde Fermanian-Kammerer, Norbert J. Mauser, Hans Peter Stimming. On the time evolution of Wigner measures for Schrödinger equations. Communications on Pure & Applied Analysis, 2009, 8 (2) : 559-585. doi: 10.3934/cpaa.2009.8.559

[3]

Yannis Petrohilos-Andrianos, Anastasios Xepapadeas. On the evolution of compliance and regulation with tax evading agents. Journal of Dynamics & Games, 2016, 3 (3) : 231-260. doi: 10.3934/jdg.2016013

[4]

Nikolaos S. Papageorgiou, Vicenţiu D. Rădulescu, Dušan D. Repovš. Periodic solutions for implicit evolution inclusions. Evolution Equations & Control Theory, 2019, 8 (3) : 621-631. doi: 10.3934/eect.2019029

[5]

Jin Liang, James H. Liu, Ti-Jun Xiao. Nonlocal Cauchy problems for nonautonomous evolution equations. Communications on Pure & Applied Analysis, 2006, 5 (3) : 529-535. doi: 10.3934/cpaa.2006.5.529

[6]

Elimhan N. Mahmudov. Optimal control of Sturm-Liouville type evolution differential inclusions with endpoint constraints. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-18. doi: 10.3934/jimo.2019066

[7]

Janet Dyson, Rosanna Villella-Bressan, G. F. Webb. The evolution of a tumor cord cell population. Communications on Pure & Applied Analysis, 2004, 3 (3) : 331-352. doi: 10.3934/cpaa.2004.3.331

[8]

Md. Abul Kalam Azad, Edite M.G.P. Fernandes. A modified differential evolution based solution technique for economic dispatch problems. Journal of Industrial & Management Optimization, 2012, 8 (4) : 1017-1038. doi: 10.3934/jimo.2012.8.1017

[9]

Yong Zhou, V. Vijayakumar, R. Murugesu. Controllability for fractional evolution inclusions without compactness. Evolution Equations & Control Theory, 2015, 4 (4) : 507-524. doi: 10.3934/eect.2015.4.507

[10]

Leszek Gasiński, Nikolaos S. Papageorgiou. Periodic solutions for nonlinear nonmonotone evolution inclusions. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 219-238. doi: 10.3934/dcdsb.2018015

[11]

Silvia Caprino, Guido Cavallaro, Carlo Marchioro. Time evolution of a Vlasov-Poisson plasma with magnetic confinement. Kinetic & Related Models, 2012, 5 (4) : 729-742. doi: 10.3934/krm.2012.5.729

[12]

Tomás Caraballo, P.E. Kloeden. Non-autonomous attractors for integro-differential evolution equations. Discrete & Continuous Dynamical Systems - S, 2009, 2 (1) : 17-36. doi: 10.3934/dcdss.2009.2.17

[13]

Mieczysław Cichoń, Bianca Satco. On the properties of solutions set for measure driven differential inclusions. Conference Publications, 2015, 2015 (special) : 287-296. doi: 10.3934/proc.2015.0287

[14]

Mohammed Al Horani, Angelo Favini, Hiroki Tanabe. Inverse problems for evolution equations with time dependent operator-coefficients. Discrete & Continuous Dynamical Systems - S, 2016, 9 (3) : 737-744. doi: 10.3934/dcdss.2016025

[15]

Nikolaos S. Papageorgiou, Vicenţiu D. Rădulescu. Periodic solutions for time-dependent subdifferential evolution inclusions. Evolution Equations & Control Theory, 2017, 6 (2) : 277-297. doi: 10.3934/eect.2017015

[16]

Goro Akagi, Jun Kobayashi, Mitsuharu Ôtani. Principle of symmetric criticality and evolution equations. Conference Publications, 2003, 2003 (Special) : 1-10. doi: 10.3934/proc.2003.2003.1

[17]

Goro Akagi, Mitsuharu Ôtani. Evolution equations and subdifferentials in Banach spaces. Conference Publications, 2003, 2003 (Special) : 11-20. doi: 10.3934/proc.2003.2003.11

[18]

D. Bresch, T. Colin, M. Ghil, Shouhong Wang. Qualitative properties of some evolution equations. Discrete & Continuous Dynamical Systems - A, 2004, 11 (1) : i-ii. doi: 10.3934/dcds.2004.11.1i

[19]

Filippo Dell'Oro, Olivier Goubet, Youcef Mammeri, Vittorino Pata. A semidiscrete scheme for evolution equations with memory. Discrete & Continuous Dynamical Systems - A, 2019, 39 (10) : 5637-5658. doi: 10.3934/dcds.2019247

[20]

Bun Theang Ong, Masao Fukushima. Global optimization via differential evolution with automatic termination. Numerical Algebra, Control & Optimization, 2012, 2 (1) : 57-67. doi: 10.3934/naco.2012.2.57

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (16)
  • HTML views (0)
  • Cited by (5)

[Back to Top]