February  2015, 35(2): 741-755. doi: 10.3934/dcds.2015.35.741

Chain transitive induced interval maps on continua

1. 

University of Toronto, Bahen Centre 40 St. George St., Room 6290, Toronto, ON, M5S 2E4, Canada

2. 

Institute of Mathematics, NASU, Tereshchenkivs'ka 3, 01601, Kyiv, Ukraine

Received  October 2013 Revised  March 2014 Published  September 2014

Let $f:I\rightarrow I$ be a continuous map of a compact interval $I$ and $C(I)$ be the space of all compact subintervals of $I$ with the Hausdorff metric. We investigate chain transitivity of induced maps on subcontinua of $C(I)$. In particular, we prove the following theorem: Let $\mathcal{M}$ be a subcontinuum of $C(I)$ having at most countably many partitioning points. Then, the induced map $\mathcal{F}:C(I)\to C(I)$ $($i.e. $\mathcal{F}(A):=\{f(x):x\in A\}$ for each $A \in C(I)$$)$ is chain transitive on $\mathcal{M}$ iff $\mathcal{F}^{2}\vert_{\mathcal{M}}=Id$.
Citation: Mykola Matviichuk, Damoon Robatian. Chain transitive induced interval maps on continua. Discrete and Continuous Dynamical Systems, 2015, 35 (2) : 741-755. doi: 10.3934/dcds.2015.35.741
References:
[1]

G. Acosta, A. Illanes and H. Méndez-Lango, The transitivity of induced maps, Topology Appl., 156 (2009), 1013-1033. doi: 10.1016/j.topol.2008.12.025.

[2]

E. Akin, Countable metric spaces and chain transitivity, preprint, 2013.

[3]

S. J. Agronsky, A. M. Bruckner, J. G. Ceder and T. L. Pearson, The structure of $\omega$-limit sets for continuous maps,, Real Analysis Exchange, 15 (): 1989. 

[4]

A. D. Barwell, C. Good, P. Oprocha and B. E. Raines, Characterizations of $\omega$-limit sets in topologically hyperbolic systems, Discrete Contin. Dyn. Syst., 33 (2013), 1819-1833. doi: 10.3934/dcds.2013.33.1819.

[5]

L. S. Block and W. A. Coppel, Dynamics in One Dimension, Lecture Notes in Mathematics, Vol. 1513, Berlin Heidelberg, Springer-Verlag, 1992.

[6]

L. Block and E. Coven, Maps of the interval with every point chain recurrent, Proc. Amer. Math. Soc., 98 (1986), 513-515. doi: 10.1090/S0002-9939-1986-0857952-8.

[7]

L. Block and J. Franke, The chain recurrent set, attractors, and explosions, Ergodic Theory Dynamical Systems, 5 (1985), 321-327. doi: 10.1017/S0143385700002972.

[8]

A. M. Bruckner and J. Smital, The structure of $\omega$-limit sets for continuous maps of the interval, Math. Bohemica, 117 (1992), 42-47.

[9]

Y. N. Dowker and F. G. Friedlander, On limit sets in dynamical systems, Proc. London Math. Soc. (3), 4 (1954), 168-176.

[10]

V. V. Fedorenko, Asymptotic periodicity of the trajectories of an interval, Ukrainian Math. J., 61 (2009), 854-858. doi: 10.1007/s11253-009-0238-5.

[11]

V. V. Fedorenko, E. Yu. Romanenko and A. N. Sharkovsky, Trajectories of intervals in one-dimensional dynamical systems, J. Difference Equ. Appl., 13 (2007), 821-828. doi: 10.1080/10236190701396636.

[12]

A. Illanes and S. B. Nadler, Jr., Hyperspaces. Fundamentals and Recent Advances, Monographs and Textbooks in Pure and Applied Mathematics, 216, Marcel Dekker, Inc., New York, 1999.

[13]

M. Hurley, Chain recurrence and attraction in non-compact spaces, Ergod. Th. & Dynam. Sys., 11 (1991), 709-729. doi: 10.1017/S014338570000643X.

[14]

S. Kolyada and D. Robatian, On omega-limit sets of triangular induced maps, Real Analysis Exchange, 38 (2013), 299-316.

[15]

S. Kolyada and L. Snoha, On $\omega$-limit sets of triangular maps,, Real Analysis Exchange, 18 (): 1992. 

[16]

D. Kwietniak and P. Oprocha, Topological entropy and chaos for maps induced on hyperspaces, Chaos Solitons Fractals, 33 (2007), 76-86. doi: 10.1016/j.chaos.2005.12.033.

[17]

M. Matviichuk, On the dynamics of subcontinua of a tree, J. Difference Equ. Appl., 19 (2013), 223-233. doi: 10.1080/10236198.2011.634804.

[18]

S. B. Nadler, Jr., Continuum Theory: An Introduction, Monographs and Textbooks in Pure and Applied Mathematics, 158, Marcel Dekker, New York, 1992.

[19]

A. N. Sharkovsky, Continuous mapping on the limit points of an iteration sequence, (Russian) Ukrain. Mat. Zh., 18 (1966), 127-130.

[20]

A. N. Sharkovsky, Partially ordered system of attracting sets, (Russian) Dokl. Akad. Nauk SSSR, 170 (1966), 1276-1278.

[21]

M. B. Vereikina and A. N. Sharkovsky, The set of almost-recurrent points of a dynamical system, (Russian. English summary) Dokl. Akad. Nauk Ukrain. SSR Ser. A, 4 (1984), 6-9.

show all references

References:
[1]

G. Acosta, A. Illanes and H. Méndez-Lango, The transitivity of induced maps, Topology Appl., 156 (2009), 1013-1033. doi: 10.1016/j.topol.2008.12.025.

[2]

E. Akin, Countable metric spaces and chain transitivity, preprint, 2013.

[3]

S. J. Agronsky, A. M. Bruckner, J. G. Ceder and T. L. Pearson, The structure of $\omega$-limit sets for continuous maps,, Real Analysis Exchange, 15 (): 1989. 

[4]

A. D. Barwell, C. Good, P. Oprocha and B. E. Raines, Characterizations of $\omega$-limit sets in topologically hyperbolic systems, Discrete Contin. Dyn. Syst., 33 (2013), 1819-1833. doi: 10.3934/dcds.2013.33.1819.

[5]

L. S. Block and W. A. Coppel, Dynamics in One Dimension, Lecture Notes in Mathematics, Vol. 1513, Berlin Heidelberg, Springer-Verlag, 1992.

[6]

L. Block and E. Coven, Maps of the interval with every point chain recurrent, Proc. Amer. Math. Soc., 98 (1986), 513-515. doi: 10.1090/S0002-9939-1986-0857952-8.

[7]

L. Block and J. Franke, The chain recurrent set, attractors, and explosions, Ergodic Theory Dynamical Systems, 5 (1985), 321-327. doi: 10.1017/S0143385700002972.

[8]

A. M. Bruckner and J. Smital, The structure of $\omega$-limit sets for continuous maps of the interval, Math. Bohemica, 117 (1992), 42-47.

[9]

Y. N. Dowker and F. G. Friedlander, On limit sets in dynamical systems, Proc. London Math. Soc. (3), 4 (1954), 168-176.

[10]

V. V. Fedorenko, Asymptotic periodicity of the trajectories of an interval, Ukrainian Math. J., 61 (2009), 854-858. doi: 10.1007/s11253-009-0238-5.

[11]

V. V. Fedorenko, E. Yu. Romanenko and A. N. Sharkovsky, Trajectories of intervals in one-dimensional dynamical systems, J. Difference Equ. Appl., 13 (2007), 821-828. doi: 10.1080/10236190701396636.

[12]

A. Illanes and S. B. Nadler, Jr., Hyperspaces. Fundamentals and Recent Advances, Monographs and Textbooks in Pure and Applied Mathematics, 216, Marcel Dekker, Inc., New York, 1999.

[13]

M. Hurley, Chain recurrence and attraction in non-compact spaces, Ergod. Th. & Dynam. Sys., 11 (1991), 709-729. doi: 10.1017/S014338570000643X.

[14]

S. Kolyada and D. Robatian, On omega-limit sets of triangular induced maps, Real Analysis Exchange, 38 (2013), 299-316.

[15]

S. Kolyada and L. Snoha, On $\omega$-limit sets of triangular maps,, Real Analysis Exchange, 18 (): 1992. 

[16]

D. Kwietniak and P. Oprocha, Topological entropy and chaos for maps induced on hyperspaces, Chaos Solitons Fractals, 33 (2007), 76-86. doi: 10.1016/j.chaos.2005.12.033.

[17]

M. Matviichuk, On the dynamics of subcontinua of a tree, J. Difference Equ. Appl., 19 (2013), 223-233. doi: 10.1080/10236198.2011.634804.

[18]

S. B. Nadler, Jr., Continuum Theory: An Introduction, Monographs and Textbooks in Pure and Applied Mathematics, 158, Marcel Dekker, New York, 1992.

[19]

A. N. Sharkovsky, Continuous mapping on the limit points of an iteration sequence, (Russian) Ukrain. Mat. Zh., 18 (1966), 127-130.

[20]

A. N. Sharkovsky, Partially ordered system of attracting sets, (Russian) Dokl. Akad. Nauk SSSR, 170 (1966), 1276-1278.

[21]

M. B. Vereikina and A. N. Sharkovsky, The set of almost-recurrent points of a dynamical system, (Russian. English summary) Dokl. Akad. Nauk Ukrain. SSR Ser. A, 4 (1984), 6-9.

[1]

Sergio Muñoz. Robust transitivity of maps of the real line. Discrete and Continuous Dynamical Systems, 2015, 35 (3) : 1163-1177. doi: 10.3934/dcds.2015.35.1163

[2]

Hiromichi Nakayama, Takeo Noda. Minimal sets and chain recurrent sets of projective flows induced from minimal flows on $3$-manifolds. Discrete and Continuous Dynamical Systems, 2005, 12 (4) : 629-638. doi: 10.3934/dcds.2005.12.629

[3]

Matthew Nicol. Induced maps of hyperbolic Bernoulli systems. Discrete and Continuous Dynamical Systems, 2001, 7 (1) : 147-154. doi: 10.3934/dcds.2001.7.147

[4]

Jun Hu, Oleg Muzician, Yingqing Xiao. Dynamics of regularly ramified rational maps: Ⅰ. Julia sets of maps in one-parameter families. Discrete and Continuous Dynamical Systems, 2018, 38 (7) : 3189-3221. doi: 10.3934/dcds.2018139

[5]

Suzanne Lynch Hruska. Rigorous numerical models for the dynamics of complex Hénon mappings on their chain recurrent sets. Discrete and Continuous Dynamical Systems, 2006, 15 (2) : 529-558. doi: 10.3934/dcds.2006.15.529

[6]

Arno Berger, Roland Zweimüller. Invariant measures for general induced maps and towers. Discrete and Continuous Dynamical Systems, 2013, 33 (9) : 3885-3901. doi: 10.3934/dcds.2013.33.3885

[7]

Dmitri Finkelshtein, Yuri Kondratiev, Yuri Kozitsky. Glauber dynamics in continuum: A constructive approach to evolution of states. Discrete and Continuous Dynamical Systems, 2013, 33 (4) : 1431-1450. doi: 10.3934/dcds.2013.33.1431

[8]

Gabriella Bretti, Ciro D’Apice, Rosanna Manzo, Benedetto Piccoli. A continuum-discrete model for supply chains dynamics. Networks and Heterogeneous Media, 2007, 2 (4) : 661-694. doi: 10.3934/nhm.2007.2.661

[9]

Christopher Cleveland. Rotation sets for unimodal maps of the interval. Discrete and Continuous Dynamical Systems, 2003, 9 (3) : 617-632. doi: 10.3934/dcds.2003.9.617

[10]

Evelyn Sander. Hyperbolic sets for noninvertible maps and relations. Discrete and Continuous Dynamical Systems, 1999, 5 (2) : 339-357. doi: 10.3934/dcds.1999.5.339

[11]

Boju Jiang, Jaume Llibre. Minimal sets of periods for torus maps. Discrete and Continuous Dynamical Systems, 1998, 4 (2) : 301-320. doi: 10.3934/dcds.1998.4.301

[12]

Francisco J. López-Hernández. Dynamics of induced homeomorphisms of one-dimensional solenoids. Discrete and Continuous Dynamical Systems, 2018, 38 (9) : 4243-4257. doi: 10.3934/dcds.2018185

[13]

Victor Ayala, Adriano Da Silva, Luiz A. B. San Martin. Control systems on flag manifolds and their chain control sets. Discrete and Continuous Dynamical Systems, 2017, 37 (5) : 2301-2313. doi: 10.3934/dcds.2017101

[14]

Lluís Alsedà, David Juher, Pere Mumbrú. Minimal dynamics for tree maps. Discrete and Continuous Dynamical Systems, 2008, 20 (3) : 511-541. doi: 10.3934/dcds.2008.20.511

[15]

Carlos Correia Ramos, Nuno Martins, Paulo R. Pinto. Escape dynamics for interval maps. Discrete and Continuous Dynamical Systems, 2019, 39 (11) : 6241-6260. doi: 10.3934/dcds.2019272

[16]

Seung-Yeal Ha, Myeongju Kang, Bora Moon. Uniform-in-time continuum limit of the lattice Winfree model and emergent dynamics. Kinetic and Related Models, 2021, 14 (6) : 1003-1033. doi: 10.3934/krm.2021036

[17]

Tien-Cuong Dinh, Nessim Sibony. Rigidity of Julia sets for Hénon type maps. Journal of Modern Dynamics, 2014, 8 (3&4) : 499-548. doi: 10.3934/jmd.2014.8.499

[18]

Héctor E. Lomelí. Heteroclinic orbits and rotation sets for twist maps. Discrete and Continuous Dynamical Systems, 2006, 14 (2) : 343-354. doi: 10.3934/dcds.2006.14.343

[19]

Song Shao, Xiangdong Ye. Non-wandering sets of the powers of maps of a star. Discrete and Continuous Dynamical Systems, 2003, 9 (5) : 1175-1184. doi: 10.3934/dcds.2003.9.1175

[20]

Bruce Kitchens, Michał Misiurewicz. Omega-limit sets for spiral maps. Discrete and Continuous Dynamical Systems, 2010, 27 (2) : 787-798. doi: 10.3934/dcds.2010.27.787

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (147)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]