\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Chain transitive induced interval maps on continua

Abstract Related Papers Cited by
  • Let $f:I\rightarrow I$ be a continuous map of a compact interval $I$ and $C(I)$ be the space of all compact subintervals of $I$ with the Hausdorff metric. We investigate chain transitivity of induced maps on subcontinua of $C(I)$. In particular, we prove the following theorem: Let $\mathcal{M}$ be a subcontinuum of $C(I)$ having at most countably many partitioning points. Then, the induced map $\mathcal{F}:C(I)\to C(I)$ $($i.e. $\mathcal{F}(A):=\{f(x):x\in A\}$ for each $A \in C(I)$$)$ is chain transitive on $\mathcal{M}$ iff $\mathcal{F}^{2}\vert_{\mathcal{M}}=Id$.
    Mathematics Subject Classification: Primary: 37B20; Secondary: 37B45.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    G. Acosta, A. Illanes and H. Méndez-Lango, The transitivity of induced maps, Topology Appl., 156 (2009), 1013-1033.doi: 10.1016/j.topol.2008.12.025.

    [2]

    E. Akin, Countable metric spaces and chain transitivity, preprint, 2013.

    [3]

    S. J. Agronsky, A. M. Bruckner, J. G. Ceder and T. L. Pearson, The structure of $\omega$-limit sets for continuous maps, Real Analysis Exchange, 15 (1989-90), 483-510.

    [4]

    A. D. Barwell, C. Good, P. Oprocha and B. E. Raines, Characterizations of $\omega$-limit sets in topologically hyperbolic systems, Discrete Contin. Dyn. Syst., 33 (2013), 1819-1833.doi: 10.3934/dcds.2013.33.1819.

    [5]

    L. S. Block and W. A. Coppel, Dynamics in One Dimension, Lecture Notes in Mathematics, Vol. 1513, Berlin Heidelberg, Springer-Verlag, 1992.

    [6]

    L. Block and E. Coven, Maps of the interval with every point chain recurrent, Proc. Amer. Math. Soc., 98 (1986), 513-515.doi: 10.1090/S0002-9939-1986-0857952-8.

    [7]

    L. Block and J. Franke, The chain recurrent set, attractors, and explosions, Ergodic Theory Dynamical Systems, 5 (1985), 321-327.doi: 10.1017/S0143385700002972.

    [8]

    A. M. Bruckner and J. Smital, The structure of $\omega$-limit sets for continuous maps of the interval, Math. Bohemica, 117 (1992), 42-47.

    [9]

    Y. N. Dowker and F. G. Friedlander, On limit sets in dynamical systems, Proc. London Math. Soc. (3), 4 (1954), 168-176.

    [10]

    V. V. Fedorenko, Asymptotic periodicity of the trajectories of an interval, Ukrainian Math. J., 61 (2009), 854-858.doi: 10.1007/s11253-009-0238-5.

    [11]

    V. V. Fedorenko, E. Yu. Romanenko and A. N. Sharkovsky, Trajectories of intervals in one-dimensional dynamical systems, J. Difference Equ. Appl., 13 (2007), 821-828.doi: 10.1080/10236190701396636.

    [12]

    A. Illanes and S. B. Nadler, Jr., Hyperspaces. Fundamentals and Recent Advances, Monographs and Textbooks in Pure and Applied Mathematics, 216, Marcel Dekker, Inc., New York, 1999.

    [13]

    M. Hurley, Chain recurrence and attraction in non-compact spaces, Ergod. Th. & Dynam. Sys., 11 (1991), 709-729.doi: 10.1017/S014338570000643X.

    [14]

    S. Kolyada and D. Robatian, On omega-limit sets of triangular induced maps, Real Analysis Exchange, 38 (2013), 299-316.

    [15]

    S. Kolyada and L. Snoha, On $\omega$-limit sets of triangular maps, Real Analysis Exchange, 18 (1992-93), 115-130.

    [16]

    D. Kwietniak and P. Oprocha, Topological entropy and chaos for maps induced on hyperspaces, Chaos Solitons Fractals, 33 (2007), 76-86.doi: 10.1016/j.chaos.2005.12.033.

    [17]

    M. Matviichuk, On the dynamics of subcontinua of a tree, J. Difference Equ. Appl., 19 (2013), 223-233.doi: 10.1080/10236198.2011.634804.

    [18]

    S. B. Nadler, Jr., Continuum Theory: An Introduction, Monographs and Textbooks in Pure and Applied Mathematics, 158, Marcel Dekker, New York, 1992.

    [19]

    A. N. Sharkovsky, Continuous mapping on the limit points of an iteration sequence, (Russian) Ukrain. Mat. Zh., 18 (1966), 127-130.

    [20]

    A. N. Sharkovsky, Partially ordered system of attracting sets, (Russian) Dokl. Akad. Nauk SSSR, 170 (1966), 1276-1278.

    [21]

    M. B. Vereikina and A. N. Sharkovsky, The set of almost-recurrent points of a dynamical system, (Russian. English summary) Dokl. Akad. Nauk Ukrain. SSR Ser. A, 4 (1984), 6-9.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(173) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return