February  2015, 35(2): 757-770. doi: 10.3934/dcds.2015.35.757

An ergodic theory approach to chaos

1. 

Institute of Mathematics, Polish Academy of Sciences, Bankowa 14, 40-007 Katowice

Received  February 2013 Revised  October 2013 Published  September 2014

This paper is devoted to the ergodic-theoretical approach to chaos, which is based on the existence of invariant mixing measures supported on the whole space. As an example of application of the general theory we prove that there exists an invariant mixing measure with respect to the differentiation operator on the space of entire functions. From this theorem it follows the existence of universal entire functions and other chaotic properties of this transformation.
Citation: Ryszard Rudnicki. An ergodic theory approach to chaos. Discrete & Continuous Dynamical Systems - A, 2015, 35 (2) : 757-770. doi: 10.3934/dcds.2015.35.757
References:
[1]

J. Auslander and J. A. Yorke, Interval maps, factors of maps and chaos,, Tôhoku Math. J. II. Ser., 32 (1980), 177.  doi: 10.2748/tmj/1178229634.  Google Scholar

[2]

J. Banasiak and M. Moszyński, A generalization of Desch-Schappacher-Webb criteria for chaos,, Discr. Contin. Dyn. Syst., 12 (2005), 959.  doi: 10.3934/dcds.2005.12.959.  Google Scholar

[3]

J. Bass, Stationary functions and their applications to turbulence,, J. Math. Anal. Appl., 47 (1974), 354.  doi: 10.1016/0022-247X(74)90026-2.  Google Scholar

[4]

F. Bayart and S. Grivaux, Frequently hypercyclic operators,, Trans. Amer. Math. Soc., 358 (2006), 5083.  doi: 10.1090/S0002-9947-06-04019-0.  Google Scholar

[5]

F. Bayart and É. Matheron, Mixing operators and small subsets of the circle,, preprint, ().  doi: 10.1515/crelle-2014-0002.  Google Scholar

[6]

G. D. Birkhoff, Démonstration d'un théorème élémentaire sur les fonctions entières,, C.R. Acad. Sci. Paris, 189 (1929), 473.   Google Scholar

[7]

C. Blair and L. Rubel, A universal entire function,, Amer. Math. Monthly, 90 (1983), 331.  doi: 10.2307/2975786.  Google Scholar

[8]

O. Blasco, A. Bonilla and K.-G. Grosse-Erdmann, Rate of growth of frequently hypercyclic functions,, Proc. Edinb. Math. Soc., 53 (2010), 39.  doi: 10.1017/S0013091508000564.  Google Scholar

[9]

L. Bernal-González and A. Bonilla, Universality of holomorphic functions bounded on closed sets,, J. Math. Anal. Appl., 315 (2006), 302.  doi: 10.1016/j.jmaa.2005.06.010.  Google Scholar

[10]

N. N. Bogoluboff and N. M. Kriloff, La théorie générale de la measure dans son application à l'étude des systèmes dynamiques de la méchanique non-linéare,, Ann. Math., 38 (1937), 65.  doi: 10.2307/1968511.  Google Scholar

[11]

P. Brunovský and J. Komornik, Ergodicity and exactness of the shift on $C[0,\infty]$ and the semiflow of a first order partial differential equation,, J. Math. Anal. Appl., 104 (1984), 235.  doi: 10.1016/0022-247X(84)90045-3.  Google Scholar

[12]

S. A. Chobanyan, V. I. Tarieladze and N. N. Vakhania, Probability Distributions on Banach Spaces,, Kluwer Academic Publ., (1987).  doi: 10.1007/978-94-009-3873-1.  Google Scholar

[13]

I. P. Cornfeld, S. V. Fomin and Ya. G. Sinai, Ergodic Theory,, Grundlehren der Mathematischen Wissenschaften, (1982).  doi: 10.1007/978-1-4615-6927-5.  Google Scholar

[14]

R. deLaubenfels and H. Emamirad, Chaos for functions of discrete and continuous weighted shift operators,, Ergod. Th. Dynam. Sys., 21 (2001), 1411.  doi: 10.1017/S0143385701001675.  Google Scholar

[15]

W. Desch, W. Schappacher and G. F. Webb, Hypercyclic and chaotic semigroups of linear operators,, Ergodic Theory Dynamical Systems, 17 (1997), 793.  doi: 10.1017/S0143385797084976.  Google Scholar

[16]

R. L. Devaney, An Introduction to Chaotic Dynamical Systems,, 2nd edition, (1989).   Google Scholar

[17]

S. M. Duyos-Ruis, Universal functions of the structure of the space of entire functions,, Soviet Math. Dokl., 30 (1984), 713.   Google Scholar

[18]

S. El Mourchid, G. Metafune, A. Rhandi and J. Voigt, On the chaotic behaviour of size structured cell populations,, J. Math. Anal. Appl., 339 (2008), 918.  doi: 10.1016/j.jmaa.2007.07.034.  Google Scholar

[19]

C. Foiaş, Statistical study of Navier-Stokes equations I, II,, Rend. Sem. Mat. Univ. Padova, 48 (1972), 219.   Google Scholar

[20]

R. M. Gethner and J. H. Shapiro, Universal vectors for operators on spaces of holomorphic functions,, Proc. Amer. Math. Soc., 100 (1987), 281.  doi: 10.1090/S0002-9939-1987-0884467-4.  Google Scholar

[21]

G. Godefroy and J. H. Shapiro, Operators with dense, invariant, cyclic vector manifolds,, J. Funct. Anal., 98 (1991), 229.  doi: 10.1016/0022-1236(91)90078-J.  Google Scholar

[22]

K. G. Grosse-Ederman, On the universal functions of G. R. MacLane,, Complex Variables Theory Appl., 15 (1990), 193.  doi: 10.1080/17476939008814450.  Google Scholar

[23]

H. M. Hilden and L. J. Wallen, Some cyclic and non-cyclic vectors of certain operators,, Indiana Univ. Math. J., 23 (1974), 557.   Google Scholar

[24]

E. Hopf, Statistical hydromechanics and functional calculus,, J. Rational Mech. Anal., 1 (1952), 87.   Google Scholar

[25]

K. E. Howard, A size structured model of cell dwarfism,, Discr. Contin. Dyn. Syst., 1 (2001), 471.  doi: 10.3934/dcdsb.2001.1.471.  Google Scholar

[26]

U. Krengel, Ergodic Theorems,, de Gruyter Studies in Mathematics, (1985).  doi: 10.1515/9783110844641.  Google Scholar

[27]

D. Landers and L. Roggie, An ergodic theorem for Fréchet-valued random variables,, Proc. Amer. Math. Soc., 72 (1978), 49.   Google Scholar

[28]

A. Lasota, Invariant measures and a linear model of turbulence,, Rend. Sem. Mat. Univ. Padova, 61 (1979), 40.   Google Scholar

[29]

A. Lasota and M. C. Mackey, Chaos, Fractals and Noise. Stochastic Aspects of Dynamics,, Springer Applied Mathematical Sciences, (1994).  doi: 10.1007/978-1-4612-4286-4.  Google Scholar

[30]

A. Lasota and J. Yorke, On the existence of invariant measures for transformations with strictly turbulent trajectories,, Bull. Polish Acad. Sci. Math., 25 (1977), 233.   Google Scholar

[31]

W. Luh, On universal functions,, Colloq. Math. Soc., 19 (1976), 503.   Google Scholar

[32]

G. R. MacLane, Sequences of derivatives and normal families,, J. Analyse Math., 2 (1952), 72.  doi: 10.1007/BF02786968.  Google Scholar

[33]

H. Méndez-Lango, Is the process of finding $f'$ chaotic?,, Rev. Integr. Temas Mat., 22 (2004), 37.   Google Scholar

[34]

M. Murillo-Arcila and A. Peris, Strong mixing measures for linear operators and frequent hypercyclicity,, J. Math. Anal. Appl., 398 (2013), 462.  doi: 10.1016/j.jmaa.2012.08.050.  Google Scholar

[35]

J. Myjak and R. Rudnicki, Stability versus chaos for a partial differential equation,, Chaos Solitons and Fractals, 14 (2002), 607.  doi: 10.1016/S0960-0779(01)00190-4.  Google Scholar

[36]

M. Pollicott and M. Yuri, Dynamical Systems and Ergodic Theory,, London Mathematical Society Student Texts, 40 (1998).   Google Scholar

[37]

A. Rochlin, Exact endomorphisms of Lebesque spaces,, Izv. Akad. Nauk SSSR Ser. Mat., 25 (1961), 499.   Google Scholar

[38]

S. Rolewicz, On orbits of elements,, Studia Math., 32 (1969), 17.   Google Scholar

[39]

R. Rudnicki, Invariant measures for the flow of a first-order partial differential equation,, Ergodic Theory Dynamical Systems, 8 (1985), 437.  doi: 10.1017/S0143385700003059.  Google Scholar

[40]

________, Ergodic properties of hyperbolic systems of partial differential equations,, Bull. Polish Acad. Sci. Math., 33 (1985), 595.   Google Scholar

[41]

________, Ergodic measures on topological spaces,, Univ. Iagell. Ac. Math., 26 (1987), 231.   Google Scholar

[42]

________, An abstract Wiener measure invariant under a partial differential equation,, Bull. Polish Acad. Sci. Math., 35 (1987), 289.   Google Scholar

[43]

________, Strong ergodic properties of a first-order partial differential equation,, J. Math. Anal. Appl., 133 (1988), 14.  doi: 10.1016/0022-247X(88)90361-7.  Google Scholar

[44]

________, Gaussian measure-preserving linear transformations,, Univ. Iagell. Ac. Math., 30 (1993), 105.   Google Scholar

[45]

________, Chaos for some infinite-dimensional dynamical systems,, Math. Meth. Appl. Sci., 27 (2004), 723.  doi: 10.1002/mma.498.  Google Scholar

[46]

________, Chaoticity of the blood cell production system,, Chaos: An Interdisciplinary Journal of Nonlinear Science, 19 (2009), 1.  doi: 10.1063/1.3258364.  Google Scholar

[47]

________, Chaoticity and invariant measures for a cell population model,, J. Math. Anal. Appl., 393 (2012), 151.  doi: 10.1016/j.jmaa.2012.03.055.  Google Scholar

[48]

S. Wiggins, Chaotic Transport in Dynamical Systems,, Interdisciplinary Applied Mathematics, (1992).  doi: 10.1007/978-1-4757-3896-4.  Google Scholar

show all references

References:
[1]

J. Auslander and J. A. Yorke, Interval maps, factors of maps and chaos,, Tôhoku Math. J. II. Ser., 32 (1980), 177.  doi: 10.2748/tmj/1178229634.  Google Scholar

[2]

J. Banasiak and M. Moszyński, A generalization of Desch-Schappacher-Webb criteria for chaos,, Discr. Contin. Dyn. Syst., 12 (2005), 959.  doi: 10.3934/dcds.2005.12.959.  Google Scholar

[3]

J. Bass, Stationary functions and their applications to turbulence,, J. Math. Anal. Appl., 47 (1974), 354.  doi: 10.1016/0022-247X(74)90026-2.  Google Scholar

[4]

F. Bayart and S. Grivaux, Frequently hypercyclic operators,, Trans. Amer. Math. Soc., 358 (2006), 5083.  doi: 10.1090/S0002-9947-06-04019-0.  Google Scholar

[5]

F. Bayart and É. Matheron, Mixing operators and small subsets of the circle,, preprint, ().  doi: 10.1515/crelle-2014-0002.  Google Scholar

[6]

G. D. Birkhoff, Démonstration d'un théorème élémentaire sur les fonctions entières,, C.R. Acad. Sci. Paris, 189 (1929), 473.   Google Scholar

[7]

C. Blair and L. Rubel, A universal entire function,, Amer. Math. Monthly, 90 (1983), 331.  doi: 10.2307/2975786.  Google Scholar

[8]

O. Blasco, A. Bonilla and K.-G. Grosse-Erdmann, Rate of growth of frequently hypercyclic functions,, Proc. Edinb. Math. Soc., 53 (2010), 39.  doi: 10.1017/S0013091508000564.  Google Scholar

[9]

L. Bernal-González and A. Bonilla, Universality of holomorphic functions bounded on closed sets,, J. Math. Anal. Appl., 315 (2006), 302.  doi: 10.1016/j.jmaa.2005.06.010.  Google Scholar

[10]

N. N. Bogoluboff and N. M. Kriloff, La théorie générale de la measure dans son application à l'étude des systèmes dynamiques de la méchanique non-linéare,, Ann. Math., 38 (1937), 65.  doi: 10.2307/1968511.  Google Scholar

[11]

P. Brunovský and J. Komornik, Ergodicity and exactness of the shift on $C[0,\infty]$ and the semiflow of a first order partial differential equation,, J. Math. Anal. Appl., 104 (1984), 235.  doi: 10.1016/0022-247X(84)90045-3.  Google Scholar

[12]

S. A. Chobanyan, V. I. Tarieladze and N. N. Vakhania, Probability Distributions on Banach Spaces,, Kluwer Academic Publ., (1987).  doi: 10.1007/978-94-009-3873-1.  Google Scholar

[13]

I. P. Cornfeld, S. V. Fomin and Ya. G. Sinai, Ergodic Theory,, Grundlehren der Mathematischen Wissenschaften, (1982).  doi: 10.1007/978-1-4615-6927-5.  Google Scholar

[14]

R. deLaubenfels and H. Emamirad, Chaos for functions of discrete and continuous weighted shift operators,, Ergod. Th. Dynam. Sys., 21 (2001), 1411.  doi: 10.1017/S0143385701001675.  Google Scholar

[15]

W. Desch, W. Schappacher and G. F. Webb, Hypercyclic and chaotic semigroups of linear operators,, Ergodic Theory Dynamical Systems, 17 (1997), 793.  doi: 10.1017/S0143385797084976.  Google Scholar

[16]

R. L. Devaney, An Introduction to Chaotic Dynamical Systems,, 2nd edition, (1989).   Google Scholar

[17]

S. M. Duyos-Ruis, Universal functions of the structure of the space of entire functions,, Soviet Math. Dokl., 30 (1984), 713.   Google Scholar

[18]

S. El Mourchid, G. Metafune, A. Rhandi and J. Voigt, On the chaotic behaviour of size structured cell populations,, J. Math. Anal. Appl., 339 (2008), 918.  doi: 10.1016/j.jmaa.2007.07.034.  Google Scholar

[19]

C. Foiaş, Statistical study of Navier-Stokes equations I, II,, Rend. Sem. Mat. Univ. Padova, 48 (1972), 219.   Google Scholar

[20]

R. M. Gethner and J. H. Shapiro, Universal vectors for operators on spaces of holomorphic functions,, Proc. Amer. Math. Soc., 100 (1987), 281.  doi: 10.1090/S0002-9939-1987-0884467-4.  Google Scholar

[21]

G. Godefroy and J. H. Shapiro, Operators with dense, invariant, cyclic vector manifolds,, J. Funct. Anal., 98 (1991), 229.  doi: 10.1016/0022-1236(91)90078-J.  Google Scholar

[22]

K. G. Grosse-Ederman, On the universal functions of G. R. MacLane,, Complex Variables Theory Appl., 15 (1990), 193.  doi: 10.1080/17476939008814450.  Google Scholar

[23]

H. M. Hilden and L. J. Wallen, Some cyclic and non-cyclic vectors of certain operators,, Indiana Univ. Math. J., 23 (1974), 557.   Google Scholar

[24]

E. Hopf, Statistical hydromechanics and functional calculus,, J. Rational Mech. Anal., 1 (1952), 87.   Google Scholar

[25]

K. E. Howard, A size structured model of cell dwarfism,, Discr. Contin. Dyn. Syst., 1 (2001), 471.  doi: 10.3934/dcdsb.2001.1.471.  Google Scholar

[26]

U. Krengel, Ergodic Theorems,, de Gruyter Studies in Mathematics, (1985).  doi: 10.1515/9783110844641.  Google Scholar

[27]

D. Landers and L. Roggie, An ergodic theorem for Fréchet-valued random variables,, Proc. Amer. Math. Soc., 72 (1978), 49.   Google Scholar

[28]

A. Lasota, Invariant measures and a linear model of turbulence,, Rend. Sem. Mat. Univ. Padova, 61 (1979), 40.   Google Scholar

[29]

A. Lasota and M. C. Mackey, Chaos, Fractals and Noise. Stochastic Aspects of Dynamics,, Springer Applied Mathematical Sciences, (1994).  doi: 10.1007/978-1-4612-4286-4.  Google Scholar

[30]

A. Lasota and J. Yorke, On the existence of invariant measures for transformations with strictly turbulent trajectories,, Bull. Polish Acad. Sci. Math., 25 (1977), 233.   Google Scholar

[31]

W. Luh, On universal functions,, Colloq. Math. Soc., 19 (1976), 503.   Google Scholar

[32]

G. R. MacLane, Sequences of derivatives and normal families,, J. Analyse Math., 2 (1952), 72.  doi: 10.1007/BF02786968.  Google Scholar

[33]

H. Méndez-Lango, Is the process of finding $f'$ chaotic?,, Rev. Integr. Temas Mat., 22 (2004), 37.   Google Scholar

[34]

M. Murillo-Arcila and A. Peris, Strong mixing measures for linear operators and frequent hypercyclicity,, J. Math. Anal. Appl., 398 (2013), 462.  doi: 10.1016/j.jmaa.2012.08.050.  Google Scholar

[35]

J. Myjak and R. Rudnicki, Stability versus chaos for a partial differential equation,, Chaos Solitons and Fractals, 14 (2002), 607.  doi: 10.1016/S0960-0779(01)00190-4.  Google Scholar

[36]

M. Pollicott and M. Yuri, Dynamical Systems and Ergodic Theory,, London Mathematical Society Student Texts, 40 (1998).   Google Scholar

[37]

A. Rochlin, Exact endomorphisms of Lebesque spaces,, Izv. Akad. Nauk SSSR Ser. Mat., 25 (1961), 499.   Google Scholar

[38]

S. Rolewicz, On orbits of elements,, Studia Math., 32 (1969), 17.   Google Scholar

[39]

R. Rudnicki, Invariant measures for the flow of a first-order partial differential equation,, Ergodic Theory Dynamical Systems, 8 (1985), 437.  doi: 10.1017/S0143385700003059.  Google Scholar

[40]

________, Ergodic properties of hyperbolic systems of partial differential equations,, Bull. Polish Acad. Sci. Math., 33 (1985), 595.   Google Scholar

[41]

________, Ergodic measures on topological spaces,, Univ. Iagell. Ac. Math., 26 (1987), 231.   Google Scholar

[42]

________, An abstract Wiener measure invariant under a partial differential equation,, Bull. Polish Acad. Sci. Math., 35 (1987), 289.   Google Scholar

[43]

________, Strong ergodic properties of a first-order partial differential equation,, J. Math. Anal. Appl., 133 (1988), 14.  doi: 10.1016/0022-247X(88)90361-7.  Google Scholar

[44]

________, Gaussian measure-preserving linear transformations,, Univ. Iagell. Ac. Math., 30 (1993), 105.   Google Scholar

[45]

________, Chaos for some infinite-dimensional dynamical systems,, Math. Meth. Appl. Sci., 27 (2004), 723.  doi: 10.1002/mma.498.  Google Scholar

[46]

________, Chaoticity of the blood cell production system,, Chaos: An Interdisciplinary Journal of Nonlinear Science, 19 (2009), 1.  doi: 10.1063/1.3258364.  Google Scholar

[47]

________, Chaoticity and invariant measures for a cell population model,, J. Math. Anal. Appl., 393 (2012), 151.  doi: 10.1016/j.jmaa.2012.03.055.  Google Scholar

[48]

S. Wiggins, Chaotic Transport in Dynamical Systems,, Interdisciplinary Applied Mathematics, (1992).  doi: 10.1007/978-1-4757-3896-4.  Google Scholar

[1]

Paul A. Glendinning, David J. W. Simpson. A constructive approach to robust chaos using invariant manifolds and expanding cones. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020409

[2]

Sugata Gangopadhyay, Constanza Riera, Pantelimon Stănică. Gowers $ U_2 $ norm as a measure of nonlinearity for Boolean functions and their generalizations. Advances in Mathematics of Communications, 2021, 15 (2) : 241-256. doi: 10.3934/amc.2020056

[3]

Xianwei Chen, Xiangling Fu, Zhujun Jing. Chaos control in a special pendulum system for ultra-subharmonic resonance. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 847-860. doi: 10.3934/dcdsb.2020144

[4]

Neil S. Trudinger, Xu-Jia Wang. Quasilinear elliptic equations with signed measure. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 477-494. doi: 10.3934/dcds.2009.23.477

[5]

Bing Sun, Liangyun Chen, Yan Cao. On the universal $ \alpha $-central extensions of the semi-direct product of Hom-preLie algebras. Electronic Research Archive, , () : -. doi: 10.3934/era.2021004

[6]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[7]

Fanni M. Sélley. A self-consistent dynamical system with multiple absolutely continuous invariant measures. Journal of Computational Dynamics, 2021, 8 (1) : 9-32. doi: 10.3934/jcd.2021002

[8]

Bixiang Wang. Mean-square random invariant manifolds for stochastic differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1449-1468. doi: 10.3934/dcds.2020324

[9]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463

[10]

Xing-Bin Pan. Variational and operator methods for Maxwell-Stokes system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3909-3955. doi: 10.3934/dcds.2020036

[11]

Ugo Bessi. Another point of view on Kusuoka's measure. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020404

[12]

Ole Løseth Elvetun, Bjørn Fredrik Nielsen. A regularization operator for source identification for elliptic PDEs. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021006

[13]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, 2021, 14 (1) : 89-113. doi: 10.3934/krm.2020050

[14]

Bimal Mandal, Aditi Kar Gangopadhyay. A note on generalization of bent boolean functions. Advances in Mathematics of Communications, 2021, 15 (2) : 329-346. doi: 10.3934/amc.2020069

[15]

Andreas Koutsogiannis. Multiple ergodic averages for tempered functions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1177-1205. doi: 10.3934/dcds.2020314

[16]

Harrison Bray. Ergodicity of Bowen–Margulis measure for the Benoist 3-manifolds. Journal of Modern Dynamics, 2020, 16: 305-329. doi: 10.3934/jmd.2020011

[17]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[18]

Giulia Luise, Giuseppe Savaré. Contraction and regularizing properties of heat flows in metric measure spaces. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 273-297. doi: 10.3934/dcdss.2020327

[19]

Laure Cardoulis, Michel Cristofol, Morgan Morancey. A stability result for the diffusion coefficient of the heat operator defined on an unbounded guide. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020054

[20]

Claudia Lederman, Noemi Wolanski. An optimization problem with volume constraint for an inhomogeneous operator with nonstandard growth. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020391

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (64)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]