- Previous Article
- DCDS Home
- This Issue
-
Next Article
An ergodic theory approach to chaos
Transitive dendrite map with infinite decomposition ideal
1. | Department of Mathematics, Faculty of Natural Sciences, Matej Bel University, Tajovského 40, 974 01 Banská Bystrica |
References:
[1] |
G. Acosta, R. Hernández-Gutiérrez, I. Naghmouchi and P. Oprocha, Periodic points and transitivity on dendrites,, preprint, (). Google Scholar |
[2] |
L. Alsedà, S. Kolyada, J. Llibre and L'. Snoha, Entropy and periodic points for transitive maps,, Trans. Amer. Math. Soc., 351 (1999), 1551.
doi: 10.1090/S0002-9947-99-02077-2. |
[3] |
S. Baldwin, Entropy estimates for transitive maps on trees,, Topology, 40 (2001), 551.
doi: 10.1016/S0040-9383(99)00074-9. |
[4] |
F. Balibrea and L'. Snoha, Topological entropy of Devaney chaotic maps,, Topology Appl., 133 (2003), 225.
doi: 10.1016/S0166-8641(03)00090-7. |
[5] |
J. Banks, Regular periodic decompositions for topologically transitive maps,, Ergodic Theory Dynam. Systems, 17 (1997), 505.
doi: 10.1017/S0143385797069885. |
[6] |
A. M. Blokh, On transitive mappings of one-dimensional branched manifolds (Russian),, Differential-difference equations and problems of mathematical physics (Russian), (1984), 3.
|
[7] |
R. Bowen, Entropy for group endomorphisms and homogeneous spaces,, Trans. Amer. Math. Soc., 153 (1971), 401.
doi: 10.1090/S0002-9947-1971-0274707-X. |
[8] |
M. Dirbák, L'. Snoha and V. Špitalský, Minimality, transitivity, mixing and topological entropy on spaces with a free interval,, Ergodic Theory Dynam. Systems, 33 (2013), 1786.
doi: 10.1017/S0143385712000442. |
[9] |
L. Hoehn and C. Mouron, Hierarchies of chaotic maps on continua,, Ergodic Theory Dynam. Systems, (2013), 1.
doi: 10.1017/etds.2013.32. |
[10] |
K. Kuratowski, Topology. Vol. II,, Academic Press, (1968).
|
[11] |
S. B. Nadler, Continuum Theory. An Introduction,, Monographs and Textbooks in Pure and Applied Mathematics, (1992).
|
[12] |
P. Walters, An Introduction to Ergodic Theory,, Graduate Texts in Mathematics, (1982).
|
show all references
References:
[1] |
G. Acosta, R. Hernández-Gutiérrez, I. Naghmouchi and P. Oprocha, Periodic points and transitivity on dendrites,, preprint, (). Google Scholar |
[2] |
L. Alsedà, S. Kolyada, J. Llibre and L'. Snoha, Entropy and periodic points for transitive maps,, Trans. Amer. Math. Soc., 351 (1999), 1551.
doi: 10.1090/S0002-9947-99-02077-2. |
[3] |
S. Baldwin, Entropy estimates for transitive maps on trees,, Topology, 40 (2001), 551.
doi: 10.1016/S0040-9383(99)00074-9. |
[4] |
F. Balibrea and L'. Snoha, Topological entropy of Devaney chaotic maps,, Topology Appl., 133 (2003), 225.
doi: 10.1016/S0166-8641(03)00090-7. |
[5] |
J. Banks, Regular periodic decompositions for topologically transitive maps,, Ergodic Theory Dynam. Systems, 17 (1997), 505.
doi: 10.1017/S0143385797069885. |
[6] |
A. M. Blokh, On transitive mappings of one-dimensional branched manifolds (Russian),, Differential-difference equations and problems of mathematical physics (Russian), (1984), 3.
|
[7] |
R. Bowen, Entropy for group endomorphisms and homogeneous spaces,, Trans. Amer. Math. Soc., 153 (1971), 401.
doi: 10.1090/S0002-9947-1971-0274707-X. |
[8] |
M. Dirbák, L'. Snoha and V. Špitalský, Minimality, transitivity, mixing and topological entropy on spaces with a free interval,, Ergodic Theory Dynam. Systems, 33 (2013), 1786.
doi: 10.1017/S0143385712000442. |
[9] |
L. Hoehn and C. Mouron, Hierarchies of chaotic maps on continua,, Ergodic Theory Dynam. Systems, (2013), 1.
doi: 10.1017/etds.2013.32. |
[10] |
K. Kuratowski, Topology. Vol. II,, Academic Press, (1968).
|
[11] |
S. B. Nadler, Continuum Theory. An Introduction,, Monographs and Textbooks in Pure and Applied Mathematics, (1992).
|
[12] |
P. Walters, An Introduction to Ergodic Theory,, Graduate Texts in Mathematics, (1982).
|
[1] |
Ali Messaoudi, Rafael Asmat Uceda. Stochastic adding machine and $2$-dimensional Julia sets. Discrete & Continuous Dynamical Systems - A, 2014, 34 (12) : 5247-5269. doi: 10.3934/dcds.2014.34.5247 |
[2] |
Tomás Caraballo, Juan C. Jara, José A. Langa, José Valero. Morse decomposition of global attractors with infinite components. Discrete & Continuous Dynamical Systems - A, 2015, 35 (7) : 2845-2861. doi: 10.3934/dcds.2015.35.2845 |
[3] |
Jisang Yoo. Decomposition of infinite-to-one factor codes and uniqueness of relative equilibrium states. Journal of Modern Dynamics, 2018, 13: 271-284. doi: 10.3934/jmd.2018021 |
[4] |
Edson Pindza, Francis Youbi, Eben Maré, Matt Davison. Barycentric spectral domain decomposition methods for valuing a class of infinite activity Lévy models. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 625-643. doi: 10.3934/dcdss.2019040 |
[5] |
Danilo Antonio Caprio. A class of adding machines and Julia sets. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 5951-5970. doi: 10.3934/dcds.2016061 |
[6] |
Lori Alvin. Toeplitz kneading sequences and adding machines. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3277-3287. doi: 10.3934/dcds.2013.33.3277 |
[7] |
Sergiĭ Kolyada, Mykola Matviichuk. On extensions of transitive maps. Discrete & Continuous Dynamical Systems - A, 2011, 30 (3) : 767-777. doi: 10.3934/dcds.2011.30.767 |
[8] |
John Banks, Piotr Oprocha, Brett Stanley. Transitive sofic spacing shifts. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 4743-4764. doi: 10.3934/dcds.2015.35.4743 |
[9] |
Simon Castle, Norbert Peyerimhoff, Karl Friedrich Siburg. Billiards in ideal hyperbolic polygons. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 893-908. doi: 10.3934/dcds.2011.29.893 |
[10] |
Irene Márquez-Corbella, Edgar Martínez-Moro, Emilio Suárez-Canedo. On the ideal associated to a linear code. Advances in Mathematics of Communications, 2016, 10 (2) : 229-254. doi: 10.3934/amc.2016003 |
[11] |
King-Yeung Lam, Daniel Munther. Invading the ideal free distribution. Discrete & Continuous Dynamical Systems - B, 2014, 19 (10) : 3219-3244. doi: 10.3934/dcdsb.2014.19.3219 |
[12] |
Piotr Oprocha. Specification properties and dense distributional chaos. Discrete & Continuous Dynamical Systems - A, 2007, 17 (4) : 821-833. doi: 10.3934/dcds.2007.17.821 |
[13] |
Mrinal Kanti Roychowdhury, Daniel J. Rudolph. Nearly continuous Kakutani equivalence of adding machines. Journal of Modern Dynamics, 2009, 3 (1) : 103-119. doi: 10.3934/jmd.2009.3.103 |
[14] |
Grant Cairns, Barry Jessup, Marcel Nicolau. Topologically transitive homeomorphisms of quotients of tori. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 291-300. doi: 10.3934/dcds.1999.5.291 |
[15] |
Salvador Addas-Zanata, Fábio A. Tal. Homeomorphisms of the annulus with a transitive lift II. Discrete & Continuous Dynamical Systems - A, 2011, 31 (3) : 651-668. doi: 10.3934/dcds.2011.31.651 |
[16] |
Shengzhi Zhu, Shaobo Gan, Lan Wen. Indices of singularities of robustly transitive sets. Discrete & Continuous Dynamical Systems - A, 2008, 21 (3) : 945-957. doi: 10.3934/dcds.2008.21.945 |
[17] |
Carlos Gutierrez, Simon Lloyd, Vladislav Medvedev, Benito Pires, Evgeny Zhuzhoma. Transitive circle exchange transformations with flips. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 251-263. doi: 10.3934/dcds.2010.26.251 |
[18] |
Amer Rasheed, Aziz Belmiloudi, Fabrice Mahé. Dynamics of dendrite growth in a binary alloy with magnetic field effect. Conference Publications, 2011, 2011 (Special) : 1224-1233. doi: 10.3934/proc.2011.2011.1224 |
[19] |
Robert Stephen Cantrell, Chris Cosner, Yuan Lou. Evolution of dispersal and the ideal free distribution. Mathematical Biosciences & Engineering, 2010, 7 (1) : 17-36. doi: 10.3934/mbe.2010.7.17 |
[20] |
Michihiro Hirayama. Periodic probability measures are dense in the set of invariant measures. Discrete & Continuous Dynamical Systems - A, 2003, 9 (5) : 1185-1192. doi: 10.3934/dcds.2003.9.1185 |
2018 Impact Factor: 1.143
Tools
Metrics
Other articles
by authors
[Back to Top]