- Previous Article
- DCDS Home
- This Issue
-
Next Article
An ergodic theory approach to chaos
Transitive dendrite map with infinite decomposition ideal
1. | Department of Mathematics, Faculty of Natural Sciences, Matej Bel University, Tajovského 40, 974 01 Banská Bystrica |
References:
[1] |
G. Acosta, R. Hernández-Gutiérrez, I. Naghmouchi and P. Oprocha, Periodic points and transitivity on dendrites,, preprint, (). Google Scholar |
[2] |
L. Alsedà, S. Kolyada, J. Llibre and L'. Snoha, Entropy and periodic points for transitive maps,, Trans. Amer. Math. Soc., 351 (1999), 1551.
doi: 10.1090/S0002-9947-99-02077-2. |
[3] |
S. Baldwin, Entropy estimates for transitive maps on trees,, Topology, 40 (2001), 551.
doi: 10.1016/S0040-9383(99)00074-9. |
[4] |
F. Balibrea and L'. Snoha, Topological entropy of Devaney chaotic maps,, Topology Appl., 133 (2003), 225.
doi: 10.1016/S0166-8641(03)00090-7. |
[5] |
J. Banks, Regular periodic decompositions for topologically transitive maps,, Ergodic Theory Dynam. Systems, 17 (1997), 505.
doi: 10.1017/S0143385797069885. |
[6] |
A. M. Blokh, On transitive mappings of one-dimensional branched manifolds (Russian),, Differential-difference equations and problems of mathematical physics (Russian), (1984), 3.
|
[7] |
R. Bowen, Entropy for group endomorphisms and homogeneous spaces,, Trans. Amer. Math. Soc., 153 (1971), 401.
doi: 10.1090/S0002-9947-1971-0274707-X. |
[8] |
M. Dirbák, L'. Snoha and V. Špitalský, Minimality, transitivity, mixing and topological entropy on spaces with a free interval,, Ergodic Theory Dynam. Systems, 33 (2013), 1786.
doi: 10.1017/S0143385712000442. |
[9] |
L. Hoehn and C. Mouron, Hierarchies of chaotic maps on continua,, Ergodic Theory Dynam. Systems, (2013), 1.
doi: 10.1017/etds.2013.32. |
[10] |
K. Kuratowski, Topology. Vol. II,, Academic Press, (1968).
|
[11] |
S. B. Nadler, Continuum Theory. An Introduction,, Monographs and Textbooks in Pure and Applied Mathematics, (1992).
|
[12] |
P. Walters, An Introduction to Ergodic Theory,, Graduate Texts in Mathematics, (1982).
|
show all references
References:
[1] |
G. Acosta, R. Hernández-Gutiérrez, I. Naghmouchi and P. Oprocha, Periodic points and transitivity on dendrites,, preprint, (). Google Scholar |
[2] |
L. Alsedà, S. Kolyada, J. Llibre and L'. Snoha, Entropy and periodic points for transitive maps,, Trans. Amer. Math. Soc., 351 (1999), 1551.
doi: 10.1090/S0002-9947-99-02077-2. |
[3] |
S. Baldwin, Entropy estimates for transitive maps on trees,, Topology, 40 (2001), 551.
doi: 10.1016/S0040-9383(99)00074-9. |
[4] |
F. Balibrea and L'. Snoha, Topological entropy of Devaney chaotic maps,, Topology Appl., 133 (2003), 225.
doi: 10.1016/S0166-8641(03)00090-7. |
[5] |
J. Banks, Regular periodic decompositions for topologically transitive maps,, Ergodic Theory Dynam. Systems, 17 (1997), 505.
doi: 10.1017/S0143385797069885. |
[6] |
A. M. Blokh, On transitive mappings of one-dimensional branched manifolds (Russian),, Differential-difference equations and problems of mathematical physics (Russian), (1984), 3.
|
[7] |
R. Bowen, Entropy for group endomorphisms and homogeneous spaces,, Trans. Amer. Math. Soc., 153 (1971), 401.
doi: 10.1090/S0002-9947-1971-0274707-X. |
[8] |
M. Dirbák, L'. Snoha and V. Špitalský, Minimality, transitivity, mixing and topological entropy on spaces with a free interval,, Ergodic Theory Dynam. Systems, 33 (2013), 1786.
doi: 10.1017/S0143385712000442. |
[9] |
L. Hoehn and C. Mouron, Hierarchies of chaotic maps on continua,, Ergodic Theory Dynam. Systems, (2013), 1.
doi: 10.1017/etds.2013.32. |
[10] |
K. Kuratowski, Topology. Vol. II,, Academic Press, (1968).
|
[11] |
S. B. Nadler, Continuum Theory. An Introduction,, Monographs and Textbooks in Pure and Applied Mathematics, (1992).
|
[12] |
P. Walters, An Introduction to Ergodic Theory,, Graduate Texts in Mathematics, (1982).
|
[1] |
Min Ji, Xinna Ye, Fangyao Qian, T.C.E. Cheng, Yiwei Jiang. Parallel-machine scheduling in shared manufacturing. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020174 |
[2] |
Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020458 |
[3] |
Kalikinkar Mandal, Guang Gong. On ideal $ t $-tuple distribution of orthogonal functions in filtering de bruijn generators. Advances in Mathematics of Communications, 2020 doi: 10.3934/amc.2020125 |
[4] |
Yujuan Li, Huaifu Wang, Peipei Zhou, Guoshuang Zhang. Some properties of the cycle decomposition of WG-NLFSR. Advances in Mathematics of Communications, 2021, 15 (1) : 155-165. doi: 10.3934/amc.2020050 |
[5] |
Ying Lin, Qi Ye. Support vector machine classifiers by non-Euclidean margins. Mathematical Foundations of Computing, 2020, 3 (4) : 279-300. doi: 10.3934/mfc.2020018 |
[6] |
Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020107 |
[7] |
Pablo D. Carrasco, Túlio Vales. A symmetric Random Walk defined by the time-one map of a geodesic flow. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020390 |
[8] |
Ke Su, Yumeng Lin, Chun Xu. A new adaptive method to nonlinear semi-infinite programming. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021012 |
[9] |
Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020321 |
[10] |
Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216 |
[11] |
Simone Fiori. Error-based control systems on Riemannian state manifolds: Properties of the principal pushforward map associated to parallel transport. Mathematical Control & Related Fields, 2021, 11 (1) : 143-167. doi: 10.3934/mcrf.2020031 |
[12] |
Kengo Nakai, Yoshitaka Saiki. Machine-learning construction of a model for a macroscopic fluid variable using the delay-coordinate of a scalar observable. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1079-1092. doi: 10.3934/dcdss.2020352 |
[13] |
Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, 2021, 15 (1) : 159-183. doi: 10.3934/ipi.2020076 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]