February  2015, 35(2): 771-792. doi: 10.3934/dcds.2015.35.771

Transitive dendrite map with infinite decomposition ideal

1. 

Department of Mathematics, Faculty of Natural Sciences, Matej Bel University, Tajovského 40, 974 01 Banská Bystrica

Received  November 2013 Revised  April 2014 Published  September 2014

By a result of Blokh from 1984, every transitive map of a tree has the relative specification property, and so it has finite decomposition ideal, positive entropy and dense periodic points. In this paper we construct a transitive dendrite map with infinite decomposition ideal and a unique periodic point. Basically, the constructed map is (with respect to any non-atomic invariant measure) a measure-theoretic extension of the dyadic adding machine. Together with an example of Hoehn and Mouron from 2013, this shows that transitivity on dendrites is much more varied than that on trees.
Citation: Vladimír Špitalský. Transitive dendrite map with infinite decomposition ideal. Discrete & Continuous Dynamical Systems - A, 2015, 35 (2) : 771-792. doi: 10.3934/dcds.2015.35.771
References:
[1]

G. Acosta, R. Hernández-Gutiérrez, I. Naghmouchi and P. Oprocha, Periodic points and transitivity on dendrites,, preprint, ().   Google Scholar

[2]

L. Alsedà, S. Kolyada, J. Llibre and L'. Snoha, Entropy and periodic points for transitive maps,, Trans. Amer. Math. Soc., 351 (1999), 1551.  doi: 10.1090/S0002-9947-99-02077-2.  Google Scholar

[3]

S. Baldwin, Entropy estimates for transitive maps on trees,, Topology, 40 (2001), 551.  doi: 10.1016/S0040-9383(99)00074-9.  Google Scholar

[4]

F. Balibrea and L'. Snoha, Topological entropy of Devaney chaotic maps,, Topology Appl., 133 (2003), 225.  doi: 10.1016/S0166-8641(03)00090-7.  Google Scholar

[5]

J. Banks, Regular periodic decompositions for topologically transitive maps,, Ergodic Theory Dynam. Systems, 17 (1997), 505.  doi: 10.1017/S0143385797069885.  Google Scholar

[6]

A. M. Blokh, On transitive mappings of one-dimensional branched manifolds (Russian),, Differential-difference equations and problems of mathematical physics (Russian), (1984), 3.   Google Scholar

[7]

R. Bowen, Entropy for group endomorphisms and homogeneous spaces,, Trans. Amer. Math. Soc., 153 (1971), 401.  doi: 10.1090/S0002-9947-1971-0274707-X.  Google Scholar

[8]

M. Dirbák, L'. Snoha and V. Špitalský, Minimality, transitivity, mixing and topological entropy on spaces with a free interval,, Ergodic Theory Dynam. Systems, 33 (2013), 1786.  doi: 10.1017/S0143385712000442.  Google Scholar

[9]

L. Hoehn and C. Mouron, Hierarchies of chaotic maps on continua,, Ergodic Theory Dynam. Systems, (2013), 1.  doi: 10.1017/etds.2013.32.  Google Scholar

[10]

K. Kuratowski, Topology. Vol. II,, Academic Press, (1968).   Google Scholar

[11]

S. B. Nadler, Continuum Theory. An Introduction,, Monographs and Textbooks in Pure and Applied Mathematics, (1992).   Google Scholar

[12]

P. Walters, An Introduction to Ergodic Theory,, Graduate Texts in Mathematics, (1982).   Google Scholar

show all references

References:
[1]

G. Acosta, R. Hernández-Gutiérrez, I. Naghmouchi and P. Oprocha, Periodic points and transitivity on dendrites,, preprint, ().   Google Scholar

[2]

L. Alsedà, S. Kolyada, J. Llibre and L'. Snoha, Entropy and periodic points for transitive maps,, Trans. Amer. Math. Soc., 351 (1999), 1551.  doi: 10.1090/S0002-9947-99-02077-2.  Google Scholar

[3]

S. Baldwin, Entropy estimates for transitive maps on trees,, Topology, 40 (2001), 551.  doi: 10.1016/S0040-9383(99)00074-9.  Google Scholar

[4]

F. Balibrea and L'. Snoha, Topological entropy of Devaney chaotic maps,, Topology Appl., 133 (2003), 225.  doi: 10.1016/S0166-8641(03)00090-7.  Google Scholar

[5]

J. Banks, Regular periodic decompositions for topologically transitive maps,, Ergodic Theory Dynam. Systems, 17 (1997), 505.  doi: 10.1017/S0143385797069885.  Google Scholar

[6]

A. M. Blokh, On transitive mappings of one-dimensional branched manifolds (Russian),, Differential-difference equations and problems of mathematical physics (Russian), (1984), 3.   Google Scholar

[7]

R. Bowen, Entropy for group endomorphisms and homogeneous spaces,, Trans. Amer. Math. Soc., 153 (1971), 401.  doi: 10.1090/S0002-9947-1971-0274707-X.  Google Scholar

[8]

M. Dirbák, L'. Snoha and V. Špitalský, Minimality, transitivity, mixing and topological entropy on spaces with a free interval,, Ergodic Theory Dynam. Systems, 33 (2013), 1786.  doi: 10.1017/S0143385712000442.  Google Scholar

[9]

L. Hoehn and C. Mouron, Hierarchies of chaotic maps on continua,, Ergodic Theory Dynam. Systems, (2013), 1.  doi: 10.1017/etds.2013.32.  Google Scholar

[10]

K. Kuratowski, Topology. Vol. II,, Academic Press, (1968).   Google Scholar

[11]

S. B. Nadler, Continuum Theory. An Introduction,, Monographs and Textbooks in Pure and Applied Mathematics, (1992).   Google Scholar

[12]

P. Walters, An Introduction to Ergodic Theory,, Graduate Texts in Mathematics, (1982).   Google Scholar

[1]

Min Ji, Xinna Ye, Fangyao Qian, T.C.E. Cheng, Yiwei Jiang. Parallel-machine scheduling in shared manufacturing. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020174

[2]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[3]

Kalikinkar Mandal, Guang Gong. On ideal $ t $-tuple distribution of orthogonal functions in filtering de bruijn generators. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020125

[4]

Yujuan Li, Huaifu Wang, Peipei Zhou, Guoshuang Zhang. Some properties of the cycle decomposition of WG-NLFSR. Advances in Mathematics of Communications, 2021, 15 (1) : 155-165. doi: 10.3934/amc.2020050

[5]

Ying Lin, Qi Ye. Support vector machine classifiers by non-Euclidean margins. Mathematical Foundations of Computing, 2020, 3 (4) : 279-300. doi: 10.3934/mfc.2020018

[6]

Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020107

[7]

Pablo D. Carrasco, Túlio Vales. A symmetric Random Walk defined by the time-one map of a geodesic flow. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020390

[8]

Ke Su, Yumeng Lin, Chun Xu. A new adaptive method to nonlinear semi-infinite programming. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021012

[9]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[10]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[11]

Simone Fiori. Error-based control systems on Riemannian state manifolds: Properties of the principal pushforward map associated to parallel transport. Mathematical Control & Related Fields, 2021, 11 (1) : 143-167. doi: 10.3934/mcrf.2020031

[12]

Kengo Nakai, Yoshitaka Saiki. Machine-learning construction of a model for a macroscopic fluid variable using the delay-coordinate of a scalar observable. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1079-1092. doi: 10.3934/dcdss.2020352

[13]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, 2021, 15 (1) : 159-183. doi: 10.3934/ipi.2020076

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (65)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]