March  2015, 35(3): 793-806. doi: 10.3934/dcds.2015.35.793

Polynomial loss of memory for maps of the interval with a neutral fixed point

1. 

Aix Marseille Université, CNRS, CPT, UMR 7332, 13288 Marseille, France, France

2. 

Department of Mathematics, Michigan State University, East Lansing, MI 48824

3. 

Department of Mathematics, University of Houston, Houston, TX 77204-3008

Received  February 2014 Revised  June 2014 Published  October 2014

We give an example of a sequential dynamical system consisting of intermittent-type maps which exhibits loss of memory with a polynomial rate of decay. A uniform bound holds for the upper rate of memory loss. The maps may be chosen in any sequence, and the bound holds for all compositions.
Citation: Romain Aimino, Huyi Hu, Matthew Nicol, Andrei Török, Sandro Vaienti. Polynomial loss of memory for maps of the interval with a neutral fixed point. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 793-806. doi: 10.3934/dcds.2015.35.793
References:
[1]

R. Aimino, Vitesse de mélange et théorèmes limites pour les systèmes dynamiques aléatoires et non-autonomes,, Ph. D. Thesis, (2014).   Google Scholar

[2]

R. Aimino and J. Rousseau, Concentration inequalities for sequential dynamical systems of the unit interval,, preprint., ().   Google Scholar

[3]

W. Bahsoun, Ch. Bose and Y. Duan, Decay of correlation for random intermittent maps,, Nonlinearity, 27 (2014), 1543.  doi: 10.1088/0951-7715/27/7/1543.  Google Scholar

[4]

J.-P. Conze and A. Raugi, Limit theorems for sequential expanding dynamical systems on [0, 1],, Ergodic theory and related fields, 430 (2007), 89.  doi: 10.1090/conm/430/08253.  Google Scholar

[5]

W. de Melo, S. van Strien, One-dimensional Dynamics,, Springer, (1993).   Google Scholar

[6]

S. Gouëzel, Central limit theorem and stable laws for intermittent maps,, Probab. Theory Relat. Fields, 128 (2004), 82.  doi: 10.1007/s00440-003-0300-4.  Google Scholar

[7]

C. Gupta, W. Ott and A. Török, Memory loss for time-dependent piecewise expanding systems in higher dimension,, Mathematical Research Letters, 20 (2013), 141.  doi: 10.4310/MRL.2013.v20.n1.a12.  Google Scholar

[8]

H. Hu, Decay of correlations for piecewise smooth maps with indifferent fixed points,, Ergodic Theory and Dynamical Systems, 24 (2004), 495.  doi: 10.1017/S0143385703000671.  Google Scholar

[9]

C. Liverani, B. Saussol and S. Vaienti, A probabilistic approach to intermittency,, Ergodic theory and dynamical systems, 19 (1999), 671.  doi: 10.1017/S0143385799133856.  Google Scholar

[10]

W. Ott, M. Stenlund and L.-S. Young, Memory loss for time-dependent dynamical systems,, Math. Res. Lett., 16 (2009), 463.  doi: 10.4310/MRL.2009.v16.n3.a7.  Google Scholar

[11]

O. Sarig, Subexponential decay of correlations,, Invent. Math., 150 (2002), 629.  doi: 10.1007/s00222-002-0248-5.  Google Scholar

[12]

W. Shen and S. Van Strien, On stochastic stability of expanding circle maps with neutral fixed points,, Dynamical Systems, 28 (2013), 423.  doi: 10.1080/14689367.2013.806733.  Google Scholar

[13]

M. Stenlund, Non-stationary compositions of Anosov diffeomorphisms,, Nonlinearity, 24 (2011), 2991.  doi: 10.1088/0951-7715/24/10/016.  Google Scholar

[14]

M. Stenlund, L-S. Young and H. Zhang, Dispersing billiards with moving scatterers,, Comm. Math. Phys., 322 (2013), 909.  doi: 10.1007/s00220-013-1746-6.  Google Scholar

show all references

References:
[1]

R. Aimino, Vitesse de mélange et théorèmes limites pour les systèmes dynamiques aléatoires et non-autonomes,, Ph. D. Thesis, (2014).   Google Scholar

[2]

R. Aimino and J. Rousseau, Concentration inequalities for sequential dynamical systems of the unit interval,, preprint., ().   Google Scholar

[3]

W. Bahsoun, Ch. Bose and Y. Duan, Decay of correlation for random intermittent maps,, Nonlinearity, 27 (2014), 1543.  doi: 10.1088/0951-7715/27/7/1543.  Google Scholar

[4]

J.-P. Conze and A. Raugi, Limit theorems for sequential expanding dynamical systems on [0, 1],, Ergodic theory and related fields, 430 (2007), 89.  doi: 10.1090/conm/430/08253.  Google Scholar

[5]

W. de Melo, S. van Strien, One-dimensional Dynamics,, Springer, (1993).   Google Scholar

[6]

S. Gouëzel, Central limit theorem and stable laws for intermittent maps,, Probab. Theory Relat. Fields, 128 (2004), 82.  doi: 10.1007/s00440-003-0300-4.  Google Scholar

[7]

C. Gupta, W. Ott and A. Török, Memory loss for time-dependent piecewise expanding systems in higher dimension,, Mathematical Research Letters, 20 (2013), 141.  doi: 10.4310/MRL.2013.v20.n1.a12.  Google Scholar

[8]

H. Hu, Decay of correlations for piecewise smooth maps with indifferent fixed points,, Ergodic Theory and Dynamical Systems, 24 (2004), 495.  doi: 10.1017/S0143385703000671.  Google Scholar

[9]

C. Liverani, B. Saussol and S. Vaienti, A probabilistic approach to intermittency,, Ergodic theory and dynamical systems, 19 (1999), 671.  doi: 10.1017/S0143385799133856.  Google Scholar

[10]

W. Ott, M. Stenlund and L.-S. Young, Memory loss for time-dependent dynamical systems,, Math. Res. Lett., 16 (2009), 463.  doi: 10.4310/MRL.2009.v16.n3.a7.  Google Scholar

[11]

O. Sarig, Subexponential decay of correlations,, Invent. Math., 150 (2002), 629.  doi: 10.1007/s00222-002-0248-5.  Google Scholar

[12]

W. Shen and S. Van Strien, On stochastic stability of expanding circle maps with neutral fixed points,, Dynamical Systems, 28 (2013), 423.  doi: 10.1080/14689367.2013.806733.  Google Scholar

[13]

M. Stenlund, Non-stationary compositions of Anosov diffeomorphisms,, Nonlinearity, 24 (2011), 2991.  doi: 10.1088/0951-7715/24/10/016.  Google Scholar

[14]

M. Stenlund, L-S. Young and H. Zhang, Dispersing billiards with moving scatterers,, Comm. Math. Phys., 322 (2013), 909.  doi: 10.1007/s00220-013-1746-6.  Google Scholar

[1]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[2]

Peizhao Yu, Guoshan Zhang, Yi Zhang. Decoupling of cubic polynomial matrix systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 13-26. doi: 10.3934/naco.2020012

[3]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020076

[4]

Xin Guo, Lexin Li, Qiang Wu. Modeling interactive components by coordinate kernel polynomial models. Mathematical Foundations of Computing, 2020, 3 (4) : 263-277. doi: 10.3934/mfc.2020010

[5]

Barbora Benešová, Miroslav Frost, Lukáš Kadeřávek, Tomáš Roubíček, Petr Sedlák. An experimentally-fitted thermodynamical constitutive model for polycrystalline shape memory alloys. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020459

[6]

Christopher S. Goodrich, Benjamin Lyons, Mihaela T. Velcsov. Analytical and numerical monotonicity results for discrete fractional sequential differences with negative lower bound. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020269

[7]

Jia Cai, Guanglong Xu, Zhensheng Hu. Sketch-based image retrieval via CAT loss with elastic net regularization. Mathematical Foundations of Computing, 2020, 3 (4) : 219-227. doi: 10.3934/mfc.2020013

[8]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020264

[9]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[10]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[11]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[12]

Shao-Xia Qiao, Li-Jun Du. Propagation dynamics of nonlocal dispersal equations with inhomogeneous bistable nonlinearity. Electronic Research Archive, , () : -. doi: 10.3934/era.2020116

[13]

Ebraheem O. Alzahrani, Muhammad Altaf Khan. Androgen driven evolutionary population dynamics in prostate cancer growth. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020426

[14]

Vieri Benci, Marco Cococcioni. The algorithmic numbers in non-archimedean numerical computing environments. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020449

[15]

Héctor Barge. Čech cohomology, homoclinic trajectories and robustness of non-saddle sets. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020381

[16]

Ying Lin, Qi Ye. Support vector machine classifiers by non-Euclidean margins. Mathematical Foundations of Computing, 2020, 3 (4) : 279-300. doi: 10.3934/mfc.2020018

[17]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[18]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[19]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[20]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (85)
  • HTML views (0)
  • Cited by (14)

[Back to Top]