March  2015, 35(3): 807-827. doi: 10.3934/dcds.2015.35.807

The Cauchy problem for a tenth-order thin film equation II. Oscillatory source-type and fundamental similarity solutions

1. 

Universidad Carlos III de Madrid, Av. Universidad 30, 28911-Leganés, Spain

2. 

Department of Mathematical Sciences, University of Bath, Bath BA2 7AY, United Kingdom, United Kingdom

Received  February 2013 Revised  July 2014 Published  October 2014

Fundamental global similarity solutions of the standard form $$ u_\gamma(x,t) = t^{-\alpha_\gamma} f_\gamma(y),\,\,\mbox{with the rescaled variable}\,\,\, y= x/{t^{\beta_\gamma}}, \,\, \beta_\gamma= \frac {1-n \alpha_\gamma}{10}, $$ where $\alpha_\gamma>0$ are real nonlinear eigenvalues ($\gamma$ is a multiindex in $\mathbb{R}^N$) of the tenth-order thin film equation (TFE-10) \begin{eqnarray*} \label{i1a} u_{t} = \nabla \cdot (|u|^{n} \nabla \Delta^4 u) \quad in \quad \mathbb{R}^N \times \mathbb{R}_+ \,, \quad n>0,                   (0.1) \end{eqnarray*} are studied. The present paper continues the study began in [1]. Thus, the following questions are also under scrutiny:
    (I) Further study of the limit $n \to 0$, where the behaviour of finite interfaces and solutions as $y \to \infty$ are described. In particular, for $N=1$, the interfaces are shown to diverge as follows: $$ |x_0(t)| \sim 10 ( \frac{1}{n}\sec ( \frac{4\pi}{9} ) )^{\frac 9{10}} t^{\frac 1{10}} \to \infty        as       n \to 0^+. $$
    (II) For a fixed $n \in (0, \frac 98)$, oscillatory structures of solutions near interfaces.
    (III) Again, for a fixed $n \in (0, \frac 98)$, global structures of some nonlinear eigenfunctions $\{f_\gamma\}_{|\gamma| \ge 0}$ by a combination of numerical and analytical methods.
Citation: P. Álvarez-Caudevilla, J. D. Evans, V. A. Galaktionov. The Cauchy problem for a tenth-order thin film equation II. Oscillatory source-type and fundamental similarity solutions. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 807-827. doi: 10.3934/dcds.2015.35.807
References:
[1]

P. Álvarez-Caudevilla, J. D. Evans and V. A. Galaktionov, The Cauchy Problem for a Tenth-order Thin Film Equation I. Bifurcation of Self-similar Oscillatory Fundamental Solutions,, Mediterranean Journal of Mathematics, (). Google Scholar

[2]

P. Álvarez-Caudevilla, J. D. Evans and V. A. Galaktionov, Self-similar Blow-up and its Global Extension for an Unstable Tenth-Order Thin Film Equation,, in preparation., (). Google Scholar

[3]

P. Álvarez-Caudevilla and V. A. Galaktionov, Local bifurcation-branching analysis of global and "blow-up" patterns for a fourth-order thin film equation,, Nonlinear Differ. Equat. Appl., 18 (2011), 483. doi: 10.1007/s00030-011-0105-6. Google Scholar

[4]

P. Álvarez-Caudevilla and V. A. Galaktionov, Well-posedness of the Cauchy problem for a fourth-order thin film equation via regularization approaches,, submitted., (). Google Scholar

[5]

F. Bernis and A. Friedman, Higher order nonlinear degenerate parabolic equations,, J. Differ. Equat., 83 (1990), 179. doi: 10.1016/0022-0396(90)90074-Y. Google Scholar

[6]

M. S. Birman and M. Z. Solomjak, Spectral Theory of Self-Adjoint Operators in Hilbert Spaces,, D. Reidel, (1987). doi: 10.1007/978-94-009-4586-9. Google Scholar

[7]

M. Chaves and V. A. Galaktionov, On source-type solutions and the Cauchy problem for a doubly degenerate sixth-order thin film equation. I. Local oscillatory properties,, Nonlinear Anal., 72 (2010), 4030. doi: 10.1016/j.na.2010.01.034. Google Scholar

[8]

K. Deimling, Nonlinear Functional Analysis,, Springer-Verlag, (1985). doi: 10.1007/978-3-662-00547-7. Google Scholar

[9]

Yu. V. Egorov, V. A. Galaktionov, V. A. Kondratiev and S. I. Pohozaev, Global solutions of higher-order semilinear parabolic equations in the supercritical range,, Adv. Differ. Equat., 9 (2004), 1009. Google Scholar

[10]

J. D. Evans, V. A. Galaktionov and J. R. King, Blow-up similarity solutions of the fourth-order unstable thin film equation,, Euro. J. Appl. Math., 18 (2007), 195. doi: 10.1017/S0956792507006900. Google Scholar

[11]

J. D. Evans, V. A. Galaktionov and J. R. King, Source-type solutions of the fourth-order unstable thin film equation,, Euro. J. Appl. Math., 18 (2007), 273. doi: 10.1017/S0956792507006912. Google Scholar

[12]

J. D. Evans, V. A. Galaktionov and J. R. King, Unstable sixth-order thin film equation I. Blow-up similarity solutions,, Nonlinearity, 20 (2007), 1799. doi: 10.1088/0951-7715/20/8/002. Google Scholar

[13]

J. D. Evans, V. A. Galaktionov and J. R. King, Unstable sixth-order thin film equation II. Global similarity patterns,, Nonlinearity, 20 (2007), 1843. doi: 10.1088/0951-7715/20/8/003. Google Scholar

[14]

V. A. Galaktionov, Geometric Sturmian Theory of Nonlinear Parabolic Equations and Applications,, Chapman & Hall/CRC, (2004). doi: 10.1201/9780203998069. Google Scholar

[15]

V. A. Galaktionov, Countable branching of similarity solutions of higher-order porous medium type equations,, Adv. Differ. Equat., 13 (2008), 641. Google Scholar

[16]

V. A. Galaktionov, Very singular solutions for thin film equations with absorption,, Studies Appl. Math., 124 (2010), 39. doi: 10.1111/j.1467-9590.2009.00461.x. Google Scholar

[17]

V. A. Galaktionov, E. Mitidieri and S. I. Pohozaev, Variational approach to complicated similarity solutions of higher-order nonlinear evolution equations of parabolic, hyperbolic, and nonlinear dispersion types,, In Sobolev Spaces in Mathematics. II, 9 (2009), 147. doi: 10.1007/978-0-387-85650-6_8. Google Scholar

[18]

V. A. Galaktionov, E. Mitidieri and S. I. Pohozaev, Variational approach to complicated similarity solutions of higher-order nonlinear PDEs. II,, Nonl. Anal.: RWA, 12 (2011), 2435. doi: 10.1016/j.nonrwa.2011.03.001. Google Scholar

[19]

M. A. Krasnosel'skii, Topological Methods in the Theory of Nonlinear Integral Equations,, Pergamon Press, (1964). Google Scholar

[20]

M. A. Krasnosel'skii and P. P. Zabreiko, Geometrical Methods of Nonlinear Analysis,, Springer-Verlag, (1984). doi: 10.1007/978-3-642-69409-7. Google Scholar

[21]

C. Liu, Qualitative properties for a sixth-order thin film equation,, Mathematical Modelling and Analysis, 15 (2010), 457. doi: 10.3846/1392-6292.2010.15.457-471. Google Scholar

[22]

X. Liu and C. Qu, Existence and blow-up of weak solutions for a sixth-order equation related to thin solid films,, Nonlinear Anal. Real World Appl., 11 (2010), 4214. doi: 10.1016/j.nonrwa.2010.05.008. Google Scholar

[23]

L. Perko, Differential Equations and Dynamical Systems,, Springer Verlag, (1991). doi: 10.1007/978-1-4684-0392-3. Google Scholar

[24]

M. A. Vainberg and V. A. Trenogin, Theory of Branching of Solutions of Non-Linear Equations,, Noordhoff Int. Publ., (1974). Google Scholar

show all references

References:
[1]

P. Álvarez-Caudevilla, J. D. Evans and V. A. Galaktionov, The Cauchy Problem for a Tenth-order Thin Film Equation I. Bifurcation of Self-similar Oscillatory Fundamental Solutions,, Mediterranean Journal of Mathematics, (). Google Scholar

[2]

P. Álvarez-Caudevilla, J. D. Evans and V. A. Galaktionov, Self-similar Blow-up and its Global Extension for an Unstable Tenth-Order Thin Film Equation,, in preparation., (). Google Scholar

[3]

P. Álvarez-Caudevilla and V. A. Galaktionov, Local bifurcation-branching analysis of global and "blow-up" patterns for a fourth-order thin film equation,, Nonlinear Differ. Equat. Appl., 18 (2011), 483. doi: 10.1007/s00030-011-0105-6. Google Scholar

[4]

P. Álvarez-Caudevilla and V. A. Galaktionov, Well-posedness of the Cauchy problem for a fourth-order thin film equation via regularization approaches,, submitted., (). Google Scholar

[5]

F. Bernis and A. Friedman, Higher order nonlinear degenerate parabolic equations,, J. Differ. Equat., 83 (1990), 179. doi: 10.1016/0022-0396(90)90074-Y. Google Scholar

[6]

M. S. Birman and M. Z. Solomjak, Spectral Theory of Self-Adjoint Operators in Hilbert Spaces,, D. Reidel, (1987). doi: 10.1007/978-94-009-4586-9. Google Scholar

[7]

M. Chaves and V. A. Galaktionov, On source-type solutions and the Cauchy problem for a doubly degenerate sixth-order thin film equation. I. Local oscillatory properties,, Nonlinear Anal., 72 (2010), 4030. doi: 10.1016/j.na.2010.01.034. Google Scholar

[8]

K. Deimling, Nonlinear Functional Analysis,, Springer-Verlag, (1985). doi: 10.1007/978-3-662-00547-7. Google Scholar

[9]

Yu. V. Egorov, V. A. Galaktionov, V. A. Kondratiev and S. I. Pohozaev, Global solutions of higher-order semilinear parabolic equations in the supercritical range,, Adv. Differ. Equat., 9 (2004), 1009. Google Scholar

[10]

J. D. Evans, V. A. Galaktionov and J. R. King, Blow-up similarity solutions of the fourth-order unstable thin film equation,, Euro. J. Appl. Math., 18 (2007), 195. doi: 10.1017/S0956792507006900. Google Scholar

[11]

J. D. Evans, V. A. Galaktionov and J. R. King, Source-type solutions of the fourth-order unstable thin film equation,, Euro. J. Appl. Math., 18 (2007), 273. doi: 10.1017/S0956792507006912. Google Scholar

[12]

J. D. Evans, V. A. Galaktionov and J. R. King, Unstable sixth-order thin film equation I. Blow-up similarity solutions,, Nonlinearity, 20 (2007), 1799. doi: 10.1088/0951-7715/20/8/002. Google Scholar

[13]

J. D. Evans, V. A. Galaktionov and J. R. King, Unstable sixth-order thin film equation II. Global similarity patterns,, Nonlinearity, 20 (2007), 1843. doi: 10.1088/0951-7715/20/8/003. Google Scholar

[14]

V. A. Galaktionov, Geometric Sturmian Theory of Nonlinear Parabolic Equations and Applications,, Chapman & Hall/CRC, (2004). doi: 10.1201/9780203998069. Google Scholar

[15]

V. A. Galaktionov, Countable branching of similarity solutions of higher-order porous medium type equations,, Adv. Differ. Equat., 13 (2008), 641. Google Scholar

[16]

V. A. Galaktionov, Very singular solutions for thin film equations with absorption,, Studies Appl. Math., 124 (2010), 39. doi: 10.1111/j.1467-9590.2009.00461.x. Google Scholar

[17]

V. A. Galaktionov, E. Mitidieri and S. I. Pohozaev, Variational approach to complicated similarity solutions of higher-order nonlinear evolution equations of parabolic, hyperbolic, and nonlinear dispersion types,, In Sobolev Spaces in Mathematics. II, 9 (2009), 147. doi: 10.1007/978-0-387-85650-6_8. Google Scholar

[18]

V. A. Galaktionov, E. Mitidieri and S. I. Pohozaev, Variational approach to complicated similarity solutions of higher-order nonlinear PDEs. II,, Nonl. Anal.: RWA, 12 (2011), 2435. doi: 10.1016/j.nonrwa.2011.03.001. Google Scholar

[19]

M. A. Krasnosel'skii, Topological Methods in the Theory of Nonlinear Integral Equations,, Pergamon Press, (1964). Google Scholar

[20]

M. A. Krasnosel'skii and P. P. Zabreiko, Geometrical Methods of Nonlinear Analysis,, Springer-Verlag, (1984). doi: 10.1007/978-3-642-69409-7. Google Scholar

[21]

C. Liu, Qualitative properties for a sixth-order thin film equation,, Mathematical Modelling and Analysis, 15 (2010), 457. doi: 10.3846/1392-6292.2010.15.457-471. Google Scholar

[22]

X. Liu and C. Qu, Existence and blow-up of weak solutions for a sixth-order equation related to thin solid films,, Nonlinear Anal. Real World Appl., 11 (2010), 4214. doi: 10.1016/j.nonrwa.2010.05.008. Google Scholar

[23]

L. Perko, Differential Equations and Dynamical Systems,, Springer Verlag, (1991). doi: 10.1007/978-1-4684-0392-3. Google Scholar

[24]

M. A. Vainberg and V. A. Trenogin, Theory of Branching of Solutions of Non-Linear Equations,, Noordhoff Int. Publ., (1974). Google Scholar

[1]

Guirong Liu, Yuanwei Qi. Sign-changing solutions of a quasilinear heat equation with a source term. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1389-1414. doi: 10.3934/dcdsb.2013.18.1389

[2]

Jian-Guo Liu, Jinhuan Wang. Global existence for a thin film equation with subcritical mass. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1461-1492. doi: 10.3934/dcdsb.2017070

[3]

Changchun Liu, Jingxue Yin, Juan Zhou. Existence of weak solutions for a generalized thin film equation. Communications on Pure & Applied Analysis, 2007, 6 (2) : 465-480. doi: 10.3934/cpaa.2007.6.465

[4]

Yuanxiao Li, Ming Mei, Kaijun Zhang. Existence of multiple nontrivial solutions for a $p$-Kirchhoff type elliptic problem involving sign-changing weight functions. Discrete & Continuous Dynamical Systems - B, 2016, 21 (3) : 883-908. doi: 10.3934/dcdsb.2016.21.883

[5]

Guofu Lu. Nonexistence and short time asymptotic behavior of source-type solution for porous medium equation with convection in one-dimension. Discrete & Continuous Dynamical Systems - B, 2016, 21 (5) : 1567-1586. doi: 10.3934/dcdsb.2016011

[6]

Daniel Ginsberg, Gideon Simpson. Analytical and numerical results on the positivity of steady state solutions of a thin film equation. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1305-1321. doi: 10.3934/dcdsb.2013.18.1305

[7]

Shao-Yuan Huang. Global bifurcation and exact multiplicity of positive solutions for the one-dimensional Minkowski-curvature problem with sign-changing nonlinearity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3267-3284. doi: 10.3934/cpaa.2019147

[8]

M. Ben Ayed, Kamal Ould Bouh. Nonexistence results of sign-changing solutions to a supercritical nonlinear problem. Communications on Pure & Applied Analysis, 2008, 7 (5) : 1057-1075. doi: 10.3934/cpaa.2008.7.1057

[9]

Monica Musso, A. Pistoia. Sign changing solutions to a Bahri-Coron's problem in pierced domains. Discrete & Continuous Dynamical Systems - A, 2008, 21 (1) : 295-306. doi: 10.3934/dcds.2008.21.295

[10]

Aixia Qian, Shujie Li. Multiple sign-changing solutions of an elliptic eigenvalue problem. Discrete & Continuous Dynamical Systems - A, 2005, 12 (4) : 737-746. doi: 10.3934/dcds.2005.12.737

[11]

Yuxin Ge, Monica Musso, A. Pistoia, Daniel Pollack. A refined result on sign changing solutions for a critical elliptic problem. Communications on Pure & Applied Analysis, 2013, 12 (1) : 125-155. doi: 10.3934/cpaa.2013.12.125

[12]

A. El Hamidi. Multiple solutions with changing sign energy to a nonlinear elliptic equation. Communications on Pure & Applied Analysis, 2004, 3 (2) : 253-265. doi: 10.3934/cpaa.2004.3.253

[13]

Addolorata Salvatore. Sign--changing solutions for an asymptotically linear Schrödinger equation. Conference Publications, 2009, 2009 (Special) : 669-677. doi: 10.3934/proc.2009.2009.669

[14]

Lorena Bociu, Petronela Radu. Existence of weak solutions to the Cauchy problem of a semilinear wave equation with supercritical interior source and damping. Conference Publications, 2009, 2009 (Special) : 60-71. doi: 10.3934/proc.2009.2009.60

[15]

Eric A. Carlen, Süleyman Ulusoy. Localization, smoothness, and convergence to equilibrium for a thin film equation. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4537-4553. doi: 10.3934/dcds.2014.34.4537

[16]

Marina Chugunova, Roman M. Taranets. New dissipated energy for the unstable thin film equation. Communications on Pure & Applied Analysis, 2011, 10 (2) : 613-624. doi: 10.3934/cpaa.2011.10.613

[17]

Richard S. Laugesen. New dissipated energies for the thin fluid film equation. Communications on Pure & Applied Analysis, 2005, 4 (3) : 613-634. doi: 10.3934/cpaa.2005.4.613

[18]

Sergey Degtyarev. Classical solvability of the multidimensional free boundary problem for the thin film equation with quadratic mobility in the case of partial wetting. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3625-3699. doi: 10.3934/dcds.2017156

[19]

Minhajul, T. Raja Sekhar, G. P. Raja Sekhar. Stability of solutions to the Riemann problem for a thin film model of a perfectly soluble anti-surfactant solution. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3367-3386. doi: 10.3934/cpaa.2019152

[20]

Lihua Min, Xiaoping Yang. Finite speed of propagation and algebraic time decay of solutions to a generalized thin film equation. Communications on Pure & Applied Analysis, 2014, 13 (2) : 543-566. doi: 10.3934/cpaa.2014.13.543

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (0)

[Back to Top]