Citation: |
[1] |
H. Anzai, On an example of a measure preserving transformation which is not conjugate to its inverse, Proc. Japan Acad., 27 (1951), 517-522.doi: 10.3792/pja/1195571227. |
[2] |
I. P. Cornfeld, S. V. Fomin and Ya. G. Sinai, Ergodic Theory, Springer-Verlag, New York, 1982.doi: 10.1007/978-1-4615-6927-5. |
[3] |
A. I. Danilenko and V. V. Ryzhikov, On self-similarities of ergodic flows, Proc. Lond. Math. Soc., 104 (2012), 431-454.doi: 10.1112/plms/pdr032. |
[4] |
A. del Junco, Disjointness of measure-preserving transformations, minimal self-joinings and category, in Ergodic theory and dynamical systems, I (College Park, Md., 1979-80), Progr. Math., Birkhäuser, 10 (1981), 81-89.doi: 10.1007/978-1-4899-6696-4_3. |
[5] |
K. Frączek, Density of mild mixing property for vertical flows of Abelian differentials, Proc. Amer. Math. Soc., 137 (2009), 4129-4142.doi: 10.1090/S0002-9939-09-10025-4. |
[6] |
K. Frączek, J. Kułaga and M. Lemańczyk, Non-reversibility and self-joinings of higher orders for ergodic flows, J. Anal. Math., 122 (2014), 163-227.doi: 10.1007/s11854-014-0007-8. |
[7] |
K. Frączek and M. Lemańczyk, On the self-similarity problem for ergodic flows, Proc. Lond. Math. Soc., 99 (2009), 658-696.doi: 10.1112/plms/pdp013. |
[8] |
K. Frączek and M. Lemańczyk, A class of special flows over irrational rotations which is disjoint from mixing flows, Ergodic Theory Dynam. Systems, 24 (2004), 1083-1095.doi: 10.1017/S0143385704000112. |
[9] |
K. Frączek and M. Lemańczyk, On disjointness properties of some smooth flows, Fund. Math., 185 (2005), 117-142.doi: 10.4064/fm185-2-2. |
[10] |
E. Glasner, Ergodic Theory Via Joinings, Mathematical Surveys and Monographs, 101, American Mathematical Society, Providence, RI, 2003.doi: 10.1090/surv/101. |
[11] |
P. R. Halmos and J. von Neumann, Operator methods in classical mechanics. II, Ann. of Math. (2), 43 (1942), 332-350.doi: 10.2307/1968872. |
[12] |
A. Katok, Interval exchange transformations and some special flows are not mixing, Israel J. Math., 35 (1980), 301-310.doi: 10.1007/BF02760655. |
[13] |
M. Keane, Interval exchange transformations, Math. Z., 141 (1975), 25-31.doi: 10.1007/BF01236981. |
[14] |
J. King, Joining-rank and the structure of finite rank mixing transformations, J. Anal. Math., 51 (1988), 182-227.doi: 10.1007/BF02791123. |
[15] |
J. Kułaga, On the self-similarity problem for smooth flows on orientable surfaces, Ergodic Theory Dynam. Systems, 32 (2012), 1615-1660.doi: 10.1017/S0143385711000459. |
[16] |
G. Rauzy, Échanges d'intervalles et transformations induites, Acta Arith., 34 (1979), 315-328. |
[17] |
V. V. Ryzhikov, Partial multiple mixing on subsequences can distinguish between automorphisms $T$ and $T^{-1}$, Math. Notes, 74 (2003), 841-847.doi: 10.1023/B:MATN.0000009020.82284.54. |
[18] |
W. Veech, Interval exchange transformations, J. Anal. Math., 33 (1978), 222-272.doi: 10.1007/BF02790174. |
[19] |
W. Veech, Projective Swiss cheeses and uniquely ergodic interval exchange transformations, Ergodic theory and dynamical systems, I (College Park, Md., 1979-80), Progr. Math., Birkháuser, 10 (1981), 113-193.doi: 10.1007/978-1-4899-6696-4_5. |
[20] |
W. Veech, Gauss measures for transformations on the space of interval exchange maps, Ann. of Math. (2), 115 (1982), 201-242.doi: 10.2307/1971391. |
[21] |
W. Veech, The metric theory of interval exchange transformations. I. Generic spectral properties, Amer. J. Math., 106 (1984), 1331-1359.doi: 10.2307/2374396. |
[22] |
M. Viana, Ergodic theory of interval exchange maps, Rev. Mat. Complut., 19 (2006), 7-100. |