March  2015, 35(3): 829-855. doi: 10.3934/dcds.2015.35.829

On special flows over IETs that are not isomorphic to their inverses

1. 

Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, ul. Chopina 12/18, 87-100 Toruń, Poland

Received  March 2014 Revised  June 2014 Published  October 2014

In this paper we give a criterion for a special flow to be not isomorphic to its inverse which is a refine of a result in [6]. We apply this criterion to special flows $T^f$ built over ergodic interval exchange transformations $T:[0,1)\to[0,1)$ (IETs) and under piecewise absolutely continuous roof functions $f:[0,1)\to\mathbb{R}_+$. We show that for almost every IET $T$ if $f$ is absolutely continuous over exchanged intervals and has non-zero sum of jumps then the special flow $T^f$ is not isomorphic to its inverse. The same conclusion is valid for a typical piecewise constant roof function.
Citation: Przemysław Berk, Krzysztof Frączek. On special flows over IETs that are not isomorphic to their inverses. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 829-855. doi: 10.3934/dcds.2015.35.829
References:
[1]

H. Anzai, On an example of a measure preserving transformation which is not conjugate to its inverse,, Proc. Japan Acad., 27 (1951), 517.  doi: 10.3792/pja/1195571227.  Google Scholar

[2]

I. P. Cornfeld, S. V. Fomin and Ya. G. Sinai, Ergodic Theory,, Springer-Verlag, (1982).  doi: 10.1007/978-1-4615-6927-5.  Google Scholar

[3]

A. I. Danilenko and V. V. Ryzhikov, On self-similarities of ergodic flows,, Proc. Lond. Math. Soc., 104 (2012), 431.  doi: 10.1112/plms/pdr032.  Google Scholar

[4]

A. del Junco, Disjointness of measure-preserving transformations, minimal self-joinings and category,, in Ergodic theory and dynamical systems, 10 (1981), 1979.  doi: 10.1007/978-1-4899-6696-4_3.  Google Scholar

[5]

K. Frączek, Density of mild mixing property for vertical flows of Abelian differentials,, Proc. Amer. Math. Soc., 137 (2009), 4129.  doi: 10.1090/S0002-9939-09-10025-4.  Google Scholar

[6]

K. Frączek, J. Kułaga and M. Lemańczyk, Non-reversibility and self-joinings of higher orders for ergodic flows,, J. Anal. Math., 122 (2014), 163.  doi: 10.1007/s11854-014-0007-8.  Google Scholar

[7]

K. Frączek and M. Lemańczyk, On the self-similarity problem for ergodic flows,, Proc. Lond. Math. Soc., 99 (2009), 658.  doi: 10.1112/plms/pdp013.  Google Scholar

[8]

K. Frączek and M. Lemańczyk, A class of special flows over irrational rotations which is disjoint from mixing flows,, Ergodic Theory Dynam. Systems, 24 (2004), 1083.  doi: 10.1017/S0143385704000112.  Google Scholar

[9]

K. Frączek and M. Lemańczyk, On disjointness properties of some smooth flows,, Fund. Math., 185 (2005), 117.  doi: 10.4064/fm185-2-2.  Google Scholar

[10]

E. Glasner, Ergodic Theory Via Joinings,, Mathematical Surveys and Monographs, (2003).  doi: 10.1090/surv/101.  Google Scholar

[11]

P. R. Halmos and J. von Neumann, Operator methods in classical mechanics. II,, Ann. of Math. (2), 43 (1942), 332.  doi: 10.2307/1968872.  Google Scholar

[12]

A. Katok, Interval exchange transformations and some special flows are not mixing,, Israel J. Math., 35 (1980), 301.  doi: 10.1007/BF02760655.  Google Scholar

[13]

M. Keane, Interval exchange transformations,, Math. Z., 141 (1975), 25.  doi: 10.1007/BF01236981.  Google Scholar

[14]

J. King, Joining-rank and the structure of finite rank mixing transformations,, J. Anal. Math., 51 (1988), 182.  doi: 10.1007/BF02791123.  Google Scholar

[15]

J. Kułaga, On the self-similarity problem for smooth flows on orientable surfaces,, Ergodic Theory Dynam. Systems, 32 (2012), 1615.  doi: 10.1017/S0143385711000459.  Google Scholar

[16]

G. Rauzy, Échanges d'intervalles et transformations induites,, Acta Arith., 34 (1979), 315.   Google Scholar

[17]

V. V. Ryzhikov, Partial multiple mixing on subsequences can distinguish between automorphisms $T$ and $T^{-1}$,, Math. Notes, 74 (2003), 841.  doi: 10.1023/B:MATN.0000009020.82284.54.  Google Scholar

[18]

W. Veech, Interval exchange transformations,, J. Anal. Math., 33 (1978), 222.  doi: 10.1007/BF02790174.  Google Scholar

[19]

W. Veech, Projective Swiss cheeses and uniquely ergodic interval exchange transformations,, Ergodic theory and dynamical systems, 10 (1981), 1979.  doi: 10.1007/978-1-4899-6696-4_5.  Google Scholar

[20]

W. Veech, Gauss measures for transformations on the space of interval exchange maps,, Ann. of Math. (2), 115 (1982), 201.  doi: 10.2307/1971391.  Google Scholar

[21]

W. Veech, The metric theory of interval exchange transformations. I. Generic spectral properties,, Amer. J. Math., 106 (1984), 1331.  doi: 10.2307/2374396.  Google Scholar

[22]

M. Viana, Ergodic theory of interval exchange maps,, Rev. Mat. Complut., 19 (2006), 7.   Google Scholar

show all references

References:
[1]

H. Anzai, On an example of a measure preserving transformation which is not conjugate to its inverse,, Proc. Japan Acad., 27 (1951), 517.  doi: 10.3792/pja/1195571227.  Google Scholar

[2]

I. P. Cornfeld, S. V. Fomin and Ya. G. Sinai, Ergodic Theory,, Springer-Verlag, (1982).  doi: 10.1007/978-1-4615-6927-5.  Google Scholar

[3]

A. I. Danilenko and V. V. Ryzhikov, On self-similarities of ergodic flows,, Proc. Lond. Math. Soc., 104 (2012), 431.  doi: 10.1112/plms/pdr032.  Google Scholar

[4]

A. del Junco, Disjointness of measure-preserving transformations, minimal self-joinings and category,, in Ergodic theory and dynamical systems, 10 (1981), 1979.  doi: 10.1007/978-1-4899-6696-4_3.  Google Scholar

[5]

K. Frączek, Density of mild mixing property for vertical flows of Abelian differentials,, Proc. Amer. Math. Soc., 137 (2009), 4129.  doi: 10.1090/S0002-9939-09-10025-4.  Google Scholar

[6]

K. Frączek, J. Kułaga and M. Lemańczyk, Non-reversibility and self-joinings of higher orders for ergodic flows,, J. Anal. Math., 122 (2014), 163.  doi: 10.1007/s11854-014-0007-8.  Google Scholar

[7]

K. Frączek and M. Lemańczyk, On the self-similarity problem for ergodic flows,, Proc. Lond. Math. Soc., 99 (2009), 658.  doi: 10.1112/plms/pdp013.  Google Scholar

[8]

K. Frączek and M. Lemańczyk, A class of special flows over irrational rotations which is disjoint from mixing flows,, Ergodic Theory Dynam. Systems, 24 (2004), 1083.  doi: 10.1017/S0143385704000112.  Google Scholar

[9]

K. Frączek and M. Lemańczyk, On disjointness properties of some smooth flows,, Fund. Math., 185 (2005), 117.  doi: 10.4064/fm185-2-2.  Google Scholar

[10]

E. Glasner, Ergodic Theory Via Joinings,, Mathematical Surveys and Monographs, (2003).  doi: 10.1090/surv/101.  Google Scholar

[11]

P. R. Halmos and J. von Neumann, Operator methods in classical mechanics. II,, Ann. of Math. (2), 43 (1942), 332.  doi: 10.2307/1968872.  Google Scholar

[12]

A. Katok, Interval exchange transformations and some special flows are not mixing,, Israel J. Math., 35 (1980), 301.  doi: 10.1007/BF02760655.  Google Scholar

[13]

M. Keane, Interval exchange transformations,, Math. Z., 141 (1975), 25.  doi: 10.1007/BF01236981.  Google Scholar

[14]

J. King, Joining-rank and the structure of finite rank mixing transformations,, J. Anal. Math., 51 (1988), 182.  doi: 10.1007/BF02791123.  Google Scholar

[15]

J. Kułaga, On the self-similarity problem for smooth flows on orientable surfaces,, Ergodic Theory Dynam. Systems, 32 (2012), 1615.  doi: 10.1017/S0143385711000459.  Google Scholar

[16]

G. Rauzy, Échanges d'intervalles et transformations induites,, Acta Arith., 34 (1979), 315.   Google Scholar

[17]

V. V. Ryzhikov, Partial multiple mixing on subsequences can distinguish between automorphisms $T$ and $T^{-1}$,, Math. Notes, 74 (2003), 841.  doi: 10.1023/B:MATN.0000009020.82284.54.  Google Scholar

[18]

W. Veech, Interval exchange transformations,, J. Anal. Math., 33 (1978), 222.  doi: 10.1007/BF02790174.  Google Scholar

[19]

W. Veech, Projective Swiss cheeses and uniquely ergodic interval exchange transformations,, Ergodic theory and dynamical systems, 10 (1981), 1979.  doi: 10.1007/978-1-4899-6696-4_5.  Google Scholar

[20]

W. Veech, Gauss measures for transformations on the space of interval exchange maps,, Ann. of Math. (2), 115 (1982), 201.  doi: 10.2307/1971391.  Google Scholar

[21]

W. Veech, The metric theory of interval exchange transformations. I. Generic spectral properties,, Amer. J. Math., 106 (1984), 1331.  doi: 10.2307/2374396.  Google Scholar

[22]

M. Viana, Ergodic theory of interval exchange maps,, Rev. Mat. Complut., 19 (2006), 7.   Google Scholar

[1]

Dongfen Bian, Yao Xiao. Global well-posedness of non-isothermal inhomogeneous nematic liquid crystal flows. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1243-1272. doi: 10.3934/dcdsb.2020161

[2]

Denis Serre. Non-linear electromagnetism and special relativity. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 435-454. doi: 10.3934/dcds.2009.23.435

[3]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, 2021, 20 (1) : 319-338. doi: 10.3934/cpaa.2020268

[4]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[5]

Martin Heida, Stefan Neukamm, Mario Varga. Stochastic homogenization of $ \Lambda $-convex gradient flows. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 427-453. doi: 10.3934/dcdss.2020328

[6]

Giulia Luise, Giuseppe Savaré. Contraction and regularizing properties of heat flows in metric measure spaces. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 273-297. doi: 10.3934/dcdss.2020327

[7]

Luis Caffarelli, Fanghua Lin. Nonlocal heat flows preserving the L2 energy. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 49-64. doi: 10.3934/dcds.2009.23.49

[8]

Olivier Pironneau, Alexei Lozinski, Alain Perronnet, Frédéric Hecht. Numerical zoom for multiscale problems with an application to flows through porous media. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 265-280. doi: 10.3934/dcds.2009.23.265

[9]

Chun Liu, Huan Sun. On energetic variational approaches in modeling the nematic liquid crystal flows. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 455-475. doi: 10.3934/dcds.2009.23.455

[10]

Nicholas Geneva, Nicholas Zabaras. Multi-fidelity generative deep learning turbulent flows. Foundations of Data Science, 2020, 2 (4) : 391-428. doi: 10.3934/fods.2020019

[11]

Yi Guan, Michal Fečkan, Jinrong Wang. Periodic solutions and Hyers-Ulam stability of atmospheric Ekman flows. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1157-1176. doi: 10.3934/dcds.2020313

[12]

Mingjun Zhou, Jingxue Yin. Continuous subsonic-sonic flows in a two-dimensional semi-infinitely long nozzle. Electronic Research Archive, , () : -. doi: 10.3934/era.2020122

[13]

Wenlong Sun, Jiaqi Cheng, Xiaoying Han. Random attractors for 2D stochastic micropolar fluid flows on unbounded domains. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 693-716. doi: 10.3934/dcdsb.2020189

[14]

Jan Březina, Eduard Feireisl, Antonín Novotný. On convergence to equilibria of flows of compressible viscous fluids under in/out–flux boundary conditions. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021009

[15]

Tomáš Bodnár, Philippe Fraunié, Petr Knobloch, Hynek Řezníček. Numerical evaluation of artificial boundary condition for wall-bounded stably stratified flows. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 785-801. doi: 10.3934/dcdss.2020333

[16]

Hyung-Chun Lee. Efficient computations for linear feedback control problems for target velocity matching of Navier-Stokes flows via POD and LSTM-ROM. Electronic Research Archive, , () : -. doi: 10.3934/era.2020128

[17]

Xiaoli Lu, Pengzhan Huang, Yinnian He. Fully discrete finite element approximation of the 2D/3D unsteady incompressible magnetohydrodynamic-Voigt regularization flows. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 815-845. doi: 10.3934/dcdsb.2020143

[18]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[19]

Xin Guo, Lei Shi. Preface of the special issue on analysis in data science: Methods and applications. Mathematical Foundations of Computing, 2020, 3 (4) : i-ii. doi: 10.3934/mfc.2020026

[20]

Peter E. Kloeden, Yuan Lou. Preface for the special issue "20 years of DCDS-B". Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : i-ii. doi: 10.3934/dcdsb.2020372

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (37)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]