\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Non ultracontractive heat kernel bounds by Lyapunov conditions

Abstract Related Papers Cited by
  • Nash and Sobolev inequalities are known to be equivalent to ultracontractive properties of heat-like Markov semigroups, hence to uniform on-diagonal bounds on their kernel densities. In non ultracontractive settings, such bounds can not hold, and (necessarily weaker, non uniform) bounds on the semigroups can be derived by means of weighted Nash (or super-Poincaré) inequalities. The purpose of this note is to show how to check these weighted Nash inequalities in concrete examples of reversible diffusion Markov semigroups in $\mathbb{R}^d$, in a very simple and general manner. We also deduce off-diagonal bounds for the Markov kernels of the semigroups, refining E. B. Davies' original argument.
    Mathematics Subject Classification: 35P05, 47D07, 35K08, 60J60.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    D. Bakry, F. Barthe, P. Cattiaux and A. Guillin, A simple proof of the Poincaré inequality for a large class of probability measures including the log-concave case, Elec. Comm. Prob., 13 (2008), 60-66.doi: 10.1214/ECP.v13-1352.

    [2]

    D. Bakry, F. Bolley, I. Gentil and P. Maheux, Weighted Nash inequalities, Revista Mat. Iberoam., 28 (2012), 879-906.doi: 10.4171/RMI/695.

    [3]

    D. Bakry, I. Gentil and M. Ledoux, Analysis and Geometry of Markov Diffusion Operators, Grund. math. Wiss., vol. 348. Cham, 2014.doi: 10.1007/978-3-319-00227-9.

    [4]

    S. G. Bobkov and M. Ledoux, Weighted Poincaré-type inequalities for Cauchy and other convex measures, Ann. Prob., 37 (2009), 403-427.doi: 10.1214/08-AOP407.

    [5]

    S. Boutayeb, T. Coulhon and A. Sikora, A new approach to pointwise heat kernel upper bounds on doubling metric measure spaces, Preprint, november 2013.

    [6]

    E. A. Carlen, S. Kusuoka and D. W. Stroock, Upper bounds for symmetric Markov transition functions, Ann. Inst. H. Poincaré Prob. Stat., 23 (1987), 245-287.

    [7]

    P. Cattiaux, N. Gozlan, A. Guillin and C. Roberto, Functional inequalities for heavy tailed distributions and application to isoperimetry, Elec. J. Prob., 15 (2010), 346-385.doi: 10.1214/EJP.v15-754.

    [8]

    P. Cattiaux, A. Guillin, F.-Y. Wang and L. Wu, Lyapunov conditions for super Poincaré inequalities, J. Funct. Anal., 256 (2009), 1821-1841.doi: 10.1016/j.jfa.2009.01.003.

    [9]

    T. Coulhon, Ultracontractivity and Nash type inequalities, J. Funct. Anal., 141 (1996), 510-539.doi: 10.1006/jfan.1996.0140.

    [10]

    T. Coulhon, Heat kernel estimates, Sobolev-type inequalities and Riesz transform on noncompact Riemannian manifolds, In Analysis and geometry of metric measure spaces., CRM Proc. and Lecture Notes, Montréal, 56 (2013), 55-66.

    [11]

    T. Coulhon and A. Sikora, Gaussian heat kernel bounds via Phragmèn-Lindelöf theorem, Proc. London. Math. Soc., 96 (2008), 507-544.doi: 10.1112/plms/pdm050.

    [12]

    E. B. Davies, Explicit constants for Gaussian upper bounds on heat kernels, Amer. J. Math., 109 (1987), 319-334.doi: 10.2307/2374577.

    [13]

    E. B. Davies, Heat Kernels and Spectral Theory, Cambridge Tracts in Math., vol. 92. Cambridge Univ. Press, Cambridge, 1990.

    [14]

    O. Kavian, G. Kerkyacharian and B. Roynette, Quelques remarques sur l'ultracontractivité, J. Funct. Anal., 111 (1993), 155-196.doi: 10.1006/jfan.1993.1008.

    [15]

    V. H. Nguyen, Dimensional variance estimates of Brascamp-Lieb type and a local approach to dimensional Prékopa theorem, J. Funct. Anal., 266 (2014), 931-955.doi: 10.1016/j.jfa.2013.11.003.

    [16]

    L. Saloff-Coste, Sobolev inequalities in familiar and unfamiliar settings, In Sobolev spaces in mathematics. I, Int. Math. Ser., Springer, New York, 8 (2009), 299-343.doi: 10.1007/978-0-387-85648-3_11.

    [17]

    F.-Y. Wang, Functional inequalities for empty essential spectrum, J. Funct. Anal., 170 (2000), 219-245.doi: 10.1006/jfan.1999.3516.

    [18]

    F.-Y. Wang, Functional inequalities and spectrum estimates: The infinite measure case, J. Funct. Anal., 194 (2002), 288-310.doi: 10.1006/jfan.2002.3968.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(83) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return