Citation: |
[1] |
H. Bahouri, J. Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, Springer-Verlag, Berlin-Heidelberg-NewYork, 2011.doi: 10.1007/978-3-642-16830-7. |
[2] |
G. R. Blanco, On the Cauchy problem for the Camassa-Holm equation, Nonl. Anal. TMA., 46 (2001), 309-327.doi: 10.1016/S0362-546X(01)00791-X. |
[3] |
A. Boutet de Monvel, A. Kostenko, D. Shepelsky, Dmitry and G. Teschl, Long-Time Asymptotics for the Camassa-Holm equation, SIAM J. Math. Anal., 41 (2009), 1559-1588.doi: 10.1137/090748500. |
[4] |
A. Bressan and A. Constantin, Global conservative solutions of the Camassa-Holm equation, Arch. Ration. Mech. Anal., 183 (2007), 215-239.doi: 10.1007/s00205-006-0010-z. |
[5] |
A. Bressan and A. Constantin, Global dissipative solutions of the Camassa-Holm equation, Anal. Appl., 5 (2007), 1-27.doi: 10.1142/S0219530507000857. |
[6] |
R. Camassa and D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71 (1993), 1661-1664.doi: 10.1103/PhysRevLett.71.1661. |
[7] |
J. Y. Chemin, Perfect Incompressible Fluids, Oxford University Press, New York, 1998. |
[8] |
A. Constantin, Existence of permanent and breaking waves for a shallow water equation: A geometric approach, Ann. Inst. Fourier (Grenoble), 50 (2000), 321-362.doi: 10.5802/aif.1757. |
[9] |
A. Constantin, On the scattering problem for the Camassa-Holm equation, Proc. Roy. Soc. London A, 457 (2001), 953-970.doi: 10.1098/rspa.2000.0701. |
[10] |
A. Constantin, The trajectories of particles in Stokes waves, Invent. Math., 166 (2006), 523-535.doi: 10.1007/s00222-006-0002-5. |
[11] |
A. Constantin and J. Escher, Global existence and blow-up for a shallow water equation, Ann. Scuola. Norm. Sup. Pisa Cl. Sci., 26 (1998), 303-328. |
[12] |
A. Constantin and J. Escher, Wave breaking for nonlinear nonlocal shallow water equations, Acta Math., 181 (1998), 229-243.doi: 10.1007/BF02392586. |
[13] |
A. Constantin and J. Escher, Particle trajectories in solitary water waves, Bull. Amer. Math. Soc., 44 (2007), 423-431.doi: 10.1090/S0273-0979-07-01159-7. |
[14] |
A. Constantin and J. Escher, Analyticity of periodic traveling free surface water waves with vorticity, Ann. Math., 173 (2011), 559-568.doi: 10.4007/annals.2011.173.1.12. |
[15] |
A. Constantin, V. S. Gerdjikov and R. I. Ivanov, Inverse scattering transform for the Camassa-Holm equation, Inverse Problems, 22 (2006), 2197-2207.doi: 10.1088/0266-5611/22/6/017. |
[16] |
A. Constantin and D. Lannes, The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations, Arch. Ration. Mech. Anal., 192 (2009), 165-186.doi: 10.1007/s00205-008-0128-2. |
[17] |
A. Constantin and H. P. McKean, A shallow water equation on the circle, Comm. Pure Appl. Math., 52 (1999), 949-982.doi: {10.1002/(SICI)1097-0312(199908)52:8<949::AID-CPA3>3.0.CO;2-D}. |
[18] |
A. Constantin and W. A. Strauss, Stability of peakons, Comm. Pure Appl. Math., 53 (2000), 603-610.doi: {10.1002/(SICI)1097-0312(200005)53:5<603::AID-CPA3>3.0.CO;2-L}. |
[19] |
A. Constantin and W. A. Strauss, Stability of the Camassa-Holm solitons, J. Nonl. Sci., 12 (2002), 415-422.doi: 10.1007/s00332-002-0517-x. |
[20] |
R. Danchin, A few remarks on the Camassa-Holm equation, Diff. Integ. Eqns., 14 (2001), 953-988. |
[21] |
R. Danchin, A note on well-posedness for Camassa-Holm equation, J. Diff. Eqns., 192 (2003), 429-444.doi: 10.1016/S0022-0396(03)00096-2. |
[22] |
R. Danchin and F. Fanelli, The well-posedness issue for the density-dependent Euler equations in endpoint Besov spaces, J. Math. Pures Appl., 96 (2011), 253-278.doi: 10.1016/j.matpur.2011.04.005. |
[23] |
R. Danchin and P. B. Mucha, A critical functional framework for the inhomogeneous Navier-Stokes equations in the half-space, J. Funct. Anal., 256 (2009), 881-927.doi: 10.1016/j.jfa.2008.11.019. |
[24] |
A. Fokas and B. Fuchssteiner, Symplectic structures, their Bäklund transformations and hereditray symmetries, Phys. D., 4 (1981), 47-66.doi: 10.1016/0167-2789(81)90004-X. |
[25] |
G. Gui and Y. Liu, On the Cauchy problem for the two-compenent Camassa-Holm system, Math. Z., 268 (2011), 45-66.doi: 10.1007/s00209-009-0660-2. |
[26] |
A. A. Himonas and C. Holliman, The Cauchy problem for the Novikov equation, Nonlinearity, 25 (2012), 449-479.doi: 10.1088/0951-7715/25/2/449. |
[27] |
A. A. Himonas and J. Holmes, Hölder continuity of the solution map for the Novikov equation, J. Math. Phys., 54 (2013), 061501, 11pp.doi: 10.1063/1.4807729. |
[28] |
A. A. Himonas and C. Holliman, The Cauchy problem for a Generalized Camassa-Holm equation, Adv. Diff. Eqns., 19 (2014), 161-200. |
[29] |
A. A. Himonas, G. Misiolek, G. Ponce and Y. Zhou, Persistence Properties and Unique Continuation of Solutions of the Camassa-Holm Equation, Commun. Math. Phys., 271 (2007), 511-522.doi: 10.1007/s00220-006-0172-4. |
[30] |
H. Holden and X. Raynaud, A convergent numerical scheme for the Camassa-Holm equation based on multipeakons, Discrete Continuous Dynam. Systems-A, 14 (2006), 505-523. |
[31] |
H. Holden and X. Raynaud, Dissipative solutions for the Camassa-Holm equation, Discrete Continuous Dynam. Systems-A, 24 (2009), 1047-1112.doi: 10.3934/dcds.2009.24.1047. |
[32] |
A. N. W. Hone and J. P. Wang, Integrable peakon equations with cubic nonlinearity, J. Phys. Appl. Math. Theor., 41 (2008), 372002, 10 pp.doi: 10.1088/1751-8113/41/37/372002. |
[33] |
A. N. W. Hone, H. Lundmark and J.Szmigielski, Explicit multipeakon solutions of Novikov's cubically nonlinear integrable Camassa-Holm equation, Dyn. Partial Diff. Eqns., 6 (2009), 253-289.doi: 10.4310/DPDE.2009.v6.n3.a3. |
[34] |
Y. A. Li and P. J. Olver, Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation, J. Diff. Eqns., 162 (2000), 27-63.doi: 10.1006/jdeq.1999.3683. |
[35] |
L. Ni and Y. Zhou, Well-posedness and persistence properties for the Novikov equation, J. Diff. Eqns., 250 (2011), 3002-3021.doi: 10.1016/j.jde.2011.01.030. |
[36] |
V. S. Novikov, Generalizations of the Camassa-Holm equation, J. Phys. Appl. Math. Theor., 42 (2009), 342002, 14 pp.doi: 10.1088/1751-8113/42/34/342002. |
[37] |
J. F. Toland, Stokes waves, Topol. Meth. Nonl., Anal., 7 (1996), 1-48. |
[38] |
M. Vishik, Hydrodynamics in Besov spaces, Arch. Rat. Mech. Anal., 145 (1998), 197-214.doi: 10.1007/s002050050128. |
[39] |
Z. Xin and P. Zhang, On the weak solutions to a shallow water equation, Comm. Pure Appl. Math., 53 (2000), 1411-1433.doi: {10.1002/1097-0312(200011)53:11<1411::AID-CPA4>3.0.CO;2-5}. |
[40] |
W. Yan, Y. Li and Y. Zhang, The Cauchy problem for the intergrable Novikov equation, J. Diff. Eqns., 20 (2013), 1157-1169.doi: 10.1016/j.jde.2012.03.015. |
[41] |
K. Yan and Z. Yin, On the Cauchy problem for a two-compnent Degasperis-Procesi system, J. Diff. Eqns., 252 (2012), 2131-2159.doi: 10.1016/j.jde.2011.08.003. |
[42] |
Y. Zhao, Y. Li and W. Yan, Local well-posedness and persistence property for the generalized Novikov equation, Discrete Continuous Dynam. Systems-A, 34 (2014), 803-820.doi: 10.3934/dcds.2014.34.803. |