March  2015, 35(3): 871-889. doi: 10.3934/dcds.2015.35.871

On the Cauchy problem for a generalized Camassa-Holm equation

1. 

Department of Mathematics, South China University of Technology, Guangzhou, Guangdong 510640, China

2. 

College of Mathematics and Information Science, Henan Normal University, Xinxiang, Henan 453007, China

Received  March 2014 Revised  May 2014 Published  October 2014

In this paper, we consider the Cauchy problem for a generalized Camassa-Holm equation. We establish the local well-posedness in the Besov space $B_{2,1}^{3/2}$ and also prove that the local well-posedness fails in the Besov space $B_{2,\infty}^{3/2}$.
Citation: Defu Chen, Yongsheng Li, Wei Yan. On the Cauchy problem for a generalized Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 871-889. doi: 10.3934/dcds.2015.35.871
References:
[1]

H. Bahouri, J. Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations,, Springer-Verlag, (2011).  doi: 10.1007/978-3-642-16830-7.  Google Scholar

[2]

G. R. Blanco, On the Cauchy problem for the Camassa-Holm equation,, Nonl. Anal. TMA., 46 (2001), 309.  doi: 10.1016/S0362-546X(01)00791-X.  Google Scholar

[3]

A. Boutet de Monvel, A. Kostenko, D. Shepelsky, Dmitry and G. Teschl, Long-Time Asymptotics for the Camassa-Holm equation,, SIAM J. Math. Anal., 41 (2009), 1559.  doi: 10.1137/090748500.  Google Scholar

[4]

A. Bressan and A. Constantin, Global conservative solutions of the Camassa-Holm equation,, Arch. Ration. Mech. Anal., 183 (2007), 215.  doi: 10.1007/s00205-006-0010-z.  Google Scholar

[5]

A. Bressan and A. Constantin, Global dissipative solutions of the Camassa-Holm equation,, Anal. Appl., 5 (2007), 1.  doi: 10.1142/S0219530507000857.  Google Scholar

[6]

R. Camassa and D. Holm, An integrable shallow water equation with peaked solitons,, Phys. Rev. Lett., 71 (1993), 1661.  doi: 10.1103/PhysRevLett.71.1661.  Google Scholar

[7]

J. Y. Chemin, Perfect Incompressible Fluids,, Oxford University Press, (1998).   Google Scholar

[8]

A. Constantin, Existence of permanent and breaking waves for a shallow water equation: A geometric approach,, Ann. Inst. Fourier (Grenoble), 50 (2000), 321.  doi: 10.5802/aif.1757.  Google Scholar

[9]

A. Constantin, On the scattering problem for the Camassa-Holm equation,, Proc. Roy. Soc. London A, 457 (2001), 953.  doi: 10.1098/rspa.2000.0701.  Google Scholar

[10]

A. Constantin, The trajectories of particles in Stokes waves,, Invent. Math., 166 (2006), 523.  doi: 10.1007/s00222-006-0002-5.  Google Scholar

[11]

A. Constantin and J. Escher, Global existence and blow-up for a shallow water equation,, Ann. Scuola. Norm. Sup. Pisa Cl. Sci., 26 (1998), 303.   Google Scholar

[12]

A. Constantin and J. Escher, Wave breaking for nonlinear nonlocal shallow water equations,, Acta Math., 181 (1998), 229.  doi: 10.1007/BF02392586.  Google Scholar

[13]

A. Constantin and J. Escher, Particle trajectories in solitary water waves,, Bull. Amer. Math. Soc., 44 (2007), 423.  doi: 10.1090/S0273-0979-07-01159-7.  Google Scholar

[14]

A. Constantin and J. Escher, Analyticity of periodic traveling free surface water waves with vorticity,, Ann. Math., 173 (2011), 559.  doi: 10.4007/annals.2011.173.1.12.  Google Scholar

[15]

A. Constantin, V. S. Gerdjikov and R. I. Ivanov, Inverse scattering transform for the Camassa-Holm equation,, Inverse Problems, 22 (2006), 2197.  doi: 10.1088/0266-5611/22/6/017.  Google Scholar

[16]

A. Constantin and D. Lannes, The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations,, Arch. Ration. Mech. Anal., 192 (2009), 165.  doi: 10.1007/s00205-008-0128-2.  Google Scholar

[17]

A. Constantin and H. P. McKean, A shallow water equation on the circle,, Comm. Pure Appl. Math., 52 (1999), 949.  doi: {10.1002/(SICI)1097-0312(199908)52:8<949::AID-CPA3>3.0.CO;2-D}.  Google Scholar

[18]

A. Constantin and W. A. Strauss, Stability of peakons,, Comm. Pure Appl. Math., 53 (2000), 603.  doi: {10.1002/(SICI)1097-0312(200005)53:5<603::AID-CPA3>3.0.CO;2-L}.  Google Scholar

[19]

A. Constantin and W. A. Strauss, Stability of the Camassa-Holm solitons,, J. Nonl. Sci., 12 (2002), 415.  doi: 10.1007/s00332-002-0517-x.  Google Scholar

[20]

R. Danchin, A few remarks on the Camassa-Holm equation,, Diff. Integ. Eqns., 14 (2001), 953.   Google Scholar

[21]

R. Danchin, A note on well-posedness for Camassa-Holm equation,, J. Diff. Eqns., 192 (2003), 429.  doi: 10.1016/S0022-0396(03)00096-2.  Google Scholar

[22]

R. Danchin and F. Fanelli, The well-posedness issue for the density-dependent Euler equations in endpoint Besov spaces,, J. Math. Pures Appl., 96 (2011), 253.  doi: 10.1016/j.matpur.2011.04.005.  Google Scholar

[23]

R. Danchin and P. B. Mucha, A critical functional framework for the inhomogeneous Navier-Stokes equations in the half-space,, J. Funct. Anal., 256 (2009), 881.  doi: 10.1016/j.jfa.2008.11.019.  Google Scholar

[24]

A. Fokas and B. Fuchssteiner, Symplectic structures, their Bäklund transformations and hereditray symmetries,, Phys. D., 4 (1981), 47.  doi: 10.1016/0167-2789(81)90004-X.  Google Scholar

[25]

G. Gui and Y. Liu, On the Cauchy problem for the two-compenent Camassa-Holm system,, Math. Z., 268 (2011), 45.  doi: 10.1007/s00209-009-0660-2.  Google Scholar

[26]

A. A. Himonas and C. Holliman, The Cauchy problem for the Novikov equation,, Nonlinearity, 25 (2012), 449.  doi: 10.1088/0951-7715/25/2/449.  Google Scholar

[27]

A. A. Himonas and J. Holmes, Hölder continuity of the solution map for the Novikov equation,, J. Math. Phys., 54 (2013).  doi: 10.1063/1.4807729.  Google Scholar

[28]

A. A. Himonas and C. Holliman, The Cauchy problem for a Generalized Camassa-Holm equation,, Adv. Diff. Eqns., 19 (2014), 161.   Google Scholar

[29]

A. A. Himonas, G. Misiolek, G. Ponce and Y. Zhou, Persistence Properties and Unique Continuation of Solutions of the Camassa-Holm Equation,, Commun. Math. Phys., 271 (2007), 511.  doi: 10.1007/s00220-006-0172-4.  Google Scholar

[30]

H. Holden and X. Raynaud, A convergent numerical scheme for the Camassa-Holm equation based on multipeakons,, Discrete Continuous Dynam. Systems-A, 14 (2006), 505.   Google Scholar

[31]

H. Holden and X. Raynaud, Dissipative solutions for the Camassa-Holm equation,, Discrete Continuous Dynam. Systems-A, 24 (2009), 1047.  doi: 10.3934/dcds.2009.24.1047.  Google Scholar

[32]

A. N. W. Hone and J. P. Wang, Integrable peakon equations with cubic nonlinearity,, J. Phys. Appl. Math. Theor., 41 (2008).  doi: 10.1088/1751-8113/41/37/372002.  Google Scholar

[33]

A. N. W. Hone, H. Lundmark and J.Szmigielski, Explicit multipeakon solutions of Novikov's cubically nonlinear integrable Camassa-Holm equation,, Dyn. Partial Diff. Eqns., 6 (2009), 253.  doi: 10.4310/DPDE.2009.v6.n3.a3.  Google Scholar

[34]

Y. A. Li and P. J. Olver, Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation,, J. Diff. Eqns., 162 (2000), 27.  doi: 10.1006/jdeq.1999.3683.  Google Scholar

[35]

L. Ni and Y. Zhou, Well-posedness and persistence properties for the Novikov equation,, J. Diff. Eqns., 250 (2011), 3002.  doi: 10.1016/j.jde.2011.01.030.  Google Scholar

[36]

V. S. Novikov, Generalizations of the Camassa-Holm equation,, J. Phys. Appl. Math. Theor., 42 (2009).  doi: 10.1088/1751-8113/42/34/342002.  Google Scholar

[37]

J. F. Toland, Stokes waves,, Topol. Meth. Nonl., 7 (1996), 1.   Google Scholar

[38]

M. Vishik, Hydrodynamics in Besov spaces,, Arch. Rat. Mech. Anal., 145 (1998), 197.  doi: 10.1007/s002050050128.  Google Scholar

[39]

Z. Xin and P. Zhang, On the weak solutions to a shallow water equation,, Comm. Pure Appl. Math., 53 (2000), 1411.  doi: {10.1002/1097-0312(200011)53:11<1411::AID-CPA4>3.0.CO;2-5}.  Google Scholar

[40]

W. Yan, Y. Li and Y. Zhang, The Cauchy problem for the intergrable Novikov equation,, J. Diff. Eqns., 20 (2013), 1157.  doi: 10.1016/j.jde.2012.03.015.  Google Scholar

[41]

K. Yan and Z. Yin, On the Cauchy problem for a two-compnent Degasperis-Procesi system,, J. Diff. Eqns., 252 (2012), 2131.  doi: 10.1016/j.jde.2011.08.003.  Google Scholar

[42]

Y. Zhao, Y. Li and W. Yan, Local well-posedness and persistence property for the generalized Novikov equation,, Discrete Continuous Dynam. Systems-A, 34 (2014), 803.  doi: 10.3934/dcds.2014.34.803.  Google Scholar

show all references

References:
[1]

H. Bahouri, J. Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations,, Springer-Verlag, (2011).  doi: 10.1007/978-3-642-16830-7.  Google Scholar

[2]

G. R. Blanco, On the Cauchy problem for the Camassa-Holm equation,, Nonl. Anal. TMA., 46 (2001), 309.  doi: 10.1016/S0362-546X(01)00791-X.  Google Scholar

[3]

A. Boutet de Monvel, A. Kostenko, D. Shepelsky, Dmitry and G. Teschl, Long-Time Asymptotics for the Camassa-Holm equation,, SIAM J. Math. Anal., 41 (2009), 1559.  doi: 10.1137/090748500.  Google Scholar

[4]

A. Bressan and A. Constantin, Global conservative solutions of the Camassa-Holm equation,, Arch. Ration. Mech. Anal., 183 (2007), 215.  doi: 10.1007/s00205-006-0010-z.  Google Scholar

[5]

A. Bressan and A. Constantin, Global dissipative solutions of the Camassa-Holm equation,, Anal. Appl., 5 (2007), 1.  doi: 10.1142/S0219530507000857.  Google Scholar

[6]

R. Camassa and D. Holm, An integrable shallow water equation with peaked solitons,, Phys. Rev. Lett., 71 (1993), 1661.  doi: 10.1103/PhysRevLett.71.1661.  Google Scholar

[7]

J. Y. Chemin, Perfect Incompressible Fluids,, Oxford University Press, (1998).   Google Scholar

[8]

A. Constantin, Existence of permanent and breaking waves for a shallow water equation: A geometric approach,, Ann. Inst. Fourier (Grenoble), 50 (2000), 321.  doi: 10.5802/aif.1757.  Google Scholar

[9]

A. Constantin, On the scattering problem for the Camassa-Holm equation,, Proc. Roy. Soc. London A, 457 (2001), 953.  doi: 10.1098/rspa.2000.0701.  Google Scholar

[10]

A. Constantin, The trajectories of particles in Stokes waves,, Invent. Math., 166 (2006), 523.  doi: 10.1007/s00222-006-0002-5.  Google Scholar

[11]

A. Constantin and J. Escher, Global existence and blow-up for a shallow water equation,, Ann. Scuola. Norm. Sup. Pisa Cl. Sci., 26 (1998), 303.   Google Scholar

[12]

A. Constantin and J. Escher, Wave breaking for nonlinear nonlocal shallow water equations,, Acta Math., 181 (1998), 229.  doi: 10.1007/BF02392586.  Google Scholar

[13]

A. Constantin and J. Escher, Particle trajectories in solitary water waves,, Bull. Amer. Math. Soc., 44 (2007), 423.  doi: 10.1090/S0273-0979-07-01159-7.  Google Scholar

[14]

A. Constantin and J. Escher, Analyticity of periodic traveling free surface water waves with vorticity,, Ann. Math., 173 (2011), 559.  doi: 10.4007/annals.2011.173.1.12.  Google Scholar

[15]

A. Constantin, V. S. Gerdjikov and R. I. Ivanov, Inverse scattering transform for the Camassa-Holm equation,, Inverse Problems, 22 (2006), 2197.  doi: 10.1088/0266-5611/22/6/017.  Google Scholar

[16]

A. Constantin and D. Lannes, The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations,, Arch. Ration. Mech. Anal., 192 (2009), 165.  doi: 10.1007/s00205-008-0128-2.  Google Scholar

[17]

A. Constantin and H. P. McKean, A shallow water equation on the circle,, Comm. Pure Appl. Math., 52 (1999), 949.  doi: {10.1002/(SICI)1097-0312(199908)52:8<949::AID-CPA3>3.0.CO;2-D}.  Google Scholar

[18]

A. Constantin and W. A. Strauss, Stability of peakons,, Comm. Pure Appl. Math., 53 (2000), 603.  doi: {10.1002/(SICI)1097-0312(200005)53:5<603::AID-CPA3>3.0.CO;2-L}.  Google Scholar

[19]

A. Constantin and W. A. Strauss, Stability of the Camassa-Holm solitons,, J. Nonl. Sci., 12 (2002), 415.  doi: 10.1007/s00332-002-0517-x.  Google Scholar

[20]

R. Danchin, A few remarks on the Camassa-Holm equation,, Diff. Integ. Eqns., 14 (2001), 953.   Google Scholar

[21]

R. Danchin, A note on well-posedness for Camassa-Holm equation,, J. Diff. Eqns., 192 (2003), 429.  doi: 10.1016/S0022-0396(03)00096-2.  Google Scholar

[22]

R. Danchin and F. Fanelli, The well-posedness issue for the density-dependent Euler equations in endpoint Besov spaces,, J. Math. Pures Appl., 96 (2011), 253.  doi: 10.1016/j.matpur.2011.04.005.  Google Scholar

[23]

R. Danchin and P. B. Mucha, A critical functional framework for the inhomogeneous Navier-Stokes equations in the half-space,, J. Funct. Anal., 256 (2009), 881.  doi: 10.1016/j.jfa.2008.11.019.  Google Scholar

[24]

A. Fokas and B. Fuchssteiner, Symplectic structures, their Bäklund transformations and hereditray symmetries,, Phys. D., 4 (1981), 47.  doi: 10.1016/0167-2789(81)90004-X.  Google Scholar

[25]

G. Gui and Y. Liu, On the Cauchy problem for the two-compenent Camassa-Holm system,, Math. Z., 268 (2011), 45.  doi: 10.1007/s00209-009-0660-2.  Google Scholar

[26]

A. A. Himonas and C. Holliman, The Cauchy problem for the Novikov equation,, Nonlinearity, 25 (2012), 449.  doi: 10.1088/0951-7715/25/2/449.  Google Scholar

[27]

A. A. Himonas and J. Holmes, Hölder continuity of the solution map for the Novikov equation,, J. Math. Phys., 54 (2013).  doi: 10.1063/1.4807729.  Google Scholar

[28]

A. A. Himonas and C. Holliman, The Cauchy problem for a Generalized Camassa-Holm equation,, Adv. Diff. Eqns., 19 (2014), 161.   Google Scholar

[29]

A. A. Himonas, G. Misiolek, G. Ponce and Y. Zhou, Persistence Properties and Unique Continuation of Solutions of the Camassa-Holm Equation,, Commun. Math. Phys., 271 (2007), 511.  doi: 10.1007/s00220-006-0172-4.  Google Scholar

[30]

H. Holden and X. Raynaud, A convergent numerical scheme for the Camassa-Holm equation based on multipeakons,, Discrete Continuous Dynam. Systems-A, 14 (2006), 505.   Google Scholar

[31]

H. Holden and X. Raynaud, Dissipative solutions for the Camassa-Holm equation,, Discrete Continuous Dynam. Systems-A, 24 (2009), 1047.  doi: 10.3934/dcds.2009.24.1047.  Google Scholar

[32]

A. N. W. Hone and J. P. Wang, Integrable peakon equations with cubic nonlinearity,, J. Phys. Appl. Math. Theor., 41 (2008).  doi: 10.1088/1751-8113/41/37/372002.  Google Scholar

[33]

A. N. W. Hone, H. Lundmark and J.Szmigielski, Explicit multipeakon solutions of Novikov's cubically nonlinear integrable Camassa-Holm equation,, Dyn. Partial Diff. Eqns., 6 (2009), 253.  doi: 10.4310/DPDE.2009.v6.n3.a3.  Google Scholar

[34]

Y. A. Li and P. J. Olver, Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation,, J. Diff. Eqns., 162 (2000), 27.  doi: 10.1006/jdeq.1999.3683.  Google Scholar

[35]

L. Ni and Y. Zhou, Well-posedness and persistence properties for the Novikov equation,, J. Diff. Eqns., 250 (2011), 3002.  doi: 10.1016/j.jde.2011.01.030.  Google Scholar

[36]

V. S. Novikov, Generalizations of the Camassa-Holm equation,, J. Phys. Appl. Math. Theor., 42 (2009).  doi: 10.1088/1751-8113/42/34/342002.  Google Scholar

[37]

J. F. Toland, Stokes waves,, Topol. Meth. Nonl., 7 (1996), 1.   Google Scholar

[38]

M. Vishik, Hydrodynamics in Besov spaces,, Arch. Rat. Mech. Anal., 145 (1998), 197.  doi: 10.1007/s002050050128.  Google Scholar

[39]

Z. Xin and P. Zhang, On the weak solutions to a shallow water equation,, Comm. Pure Appl. Math., 53 (2000), 1411.  doi: {10.1002/1097-0312(200011)53:11<1411::AID-CPA4>3.0.CO;2-5}.  Google Scholar

[40]

W. Yan, Y. Li and Y. Zhang, The Cauchy problem for the intergrable Novikov equation,, J. Diff. Eqns., 20 (2013), 1157.  doi: 10.1016/j.jde.2012.03.015.  Google Scholar

[41]

K. Yan and Z. Yin, On the Cauchy problem for a two-compnent Degasperis-Procesi system,, J. Diff. Eqns., 252 (2012), 2131.  doi: 10.1016/j.jde.2011.08.003.  Google Scholar

[42]

Y. Zhao, Y. Li and W. Yan, Local well-posedness and persistence property for the generalized Novikov equation,, Discrete Continuous Dynam. Systems-A, 34 (2014), 803.  doi: 10.3934/dcds.2014.34.803.  Google Scholar

[1]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[2]

Noufel Frikha, Valentin Konakov, Stéphane Menozzi. Well-posedness of some non-linear stable driven SDEs. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 849-898. doi: 10.3934/dcds.2020302

[3]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[4]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[5]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[6]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[7]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[8]

Shun Zhang, Jianlin Jiang, Su Zhang, Yibing Lv, Yuzhen Guo. ADMM-type methods for generalized multi-facility Weber problem. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020171

[9]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[10]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[11]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[12]

Qiao Liu. Local rigidity of certain solvable group actions on tori. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 553-567. doi: 10.3934/dcds.2020269

[13]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (1) : 301-317. doi: 10.3934/cpaa.2020267

[14]

Giulia Cavagnari, Antonio Marigonda. Attainability property for a probabilistic target in wasserstein spaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 777-812. doi: 10.3934/dcds.2020300

[15]

Alessandro Carbotti, Giovanni E. Comi. A note on Riemann-Liouville fractional Sobolev spaces. Communications on Pure & Applied Analysis, 2021, 20 (1) : 17-54. doi: 10.3934/cpaa.2020255

[16]

Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 1-28. doi: 10.3934/dcds.2020345

[17]

Qianqian Han, Xiao-Song Yang. Qualitative analysis of a generalized Nosé-Hoover oscillator. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020346

[18]

Federico Rodriguez Hertz, Zhiren Wang. On $ \epsilon $-escaping trajectories in homogeneous spaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 329-357. doi: 10.3934/dcds.2020365

[19]

Noah Stevenson, Ian Tice. A truncated real interpolation method and characterizations of screened Sobolev spaces. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5509-5566. doi: 10.3934/cpaa.2020250

[20]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (70)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]