\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On the Cauchy problem for a generalized Camassa-Holm equation

Abstract Related Papers Cited by
  • In this paper, we consider the Cauchy problem for a generalized Camassa-Holm equation. We establish the local well-posedness in the Besov space $B_{2,1}^{3/2}$ and also prove that the local well-posedness fails in the Besov space $B_{2,\infty}^{3/2}$.
    Mathematics Subject Classification: Primary: 35Q53; Secondary: 35G25, 35A01.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    H. Bahouri, J. Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, Springer-Verlag, Berlin-Heidelberg-NewYork, 2011.doi: 10.1007/978-3-642-16830-7.

    [2]

    G. R. Blanco, On the Cauchy problem for the Camassa-Holm equation, Nonl. Anal. TMA., 46 (2001), 309-327.doi: 10.1016/S0362-546X(01)00791-X.

    [3]

    A. Boutet de Monvel, A. Kostenko, D. Shepelsky, Dmitry and G. Teschl, Long-Time Asymptotics for the Camassa-Holm equation, SIAM J. Math. Anal., 41 (2009), 1559-1588.doi: 10.1137/090748500.

    [4]

    A. Bressan and A. Constantin, Global conservative solutions of the Camassa-Holm equation, Arch. Ration. Mech. Anal., 183 (2007), 215-239.doi: 10.1007/s00205-006-0010-z.

    [5]

    A. Bressan and A. Constantin, Global dissipative solutions of the Camassa-Holm equation, Anal. Appl., 5 (2007), 1-27.doi: 10.1142/S0219530507000857.

    [6]

    R. Camassa and D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71 (1993), 1661-1664.doi: 10.1103/PhysRevLett.71.1661.

    [7]

    J. Y. Chemin, Perfect Incompressible Fluids, Oxford University Press, New York, 1998.

    [8]

    A. Constantin, Existence of permanent and breaking waves for a shallow water equation: A geometric approach, Ann. Inst. Fourier (Grenoble), 50 (2000), 321-362.doi: 10.5802/aif.1757.

    [9]

    A. Constantin, On the scattering problem for the Camassa-Holm equation, Proc. Roy. Soc. London A, 457 (2001), 953-970.doi: 10.1098/rspa.2000.0701.

    [10]

    A. Constantin, The trajectories of particles in Stokes waves, Invent. Math., 166 (2006), 523-535.doi: 10.1007/s00222-006-0002-5.

    [11]

    A. Constantin and J. Escher, Global existence and blow-up for a shallow water equation, Ann. Scuola. Norm. Sup. Pisa Cl. Sci., 26 (1998), 303-328.

    [12]

    A. Constantin and J. Escher, Wave breaking for nonlinear nonlocal shallow water equations, Acta Math., 181 (1998), 229-243.doi: 10.1007/BF02392586.

    [13]

    A. Constantin and J. Escher, Particle trajectories in solitary water waves, Bull. Amer. Math. Soc., 44 (2007), 423-431.doi: 10.1090/S0273-0979-07-01159-7.

    [14]

    A. Constantin and J. Escher, Analyticity of periodic traveling free surface water waves with vorticity, Ann. Math., 173 (2011), 559-568.doi: 10.4007/annals.2011.173.1.12.

    [15]

    A. Constantin, V. S. Gerdjikov and R. I. Ivanov, Inverse scattering transform for the Camassa-Holm equation, Inverse Problems, 22 (2006), 2197-2207.doi: 10.1088/0266-5611/22/6/017.

    [16]

    A. Constantin and D. Lannes, The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations, Arch. Ration. Mech. Anal., 192 (2009), 165-186.doi: 10.1007/s00205-008-0128-2.

    [17]

    A. Constantin and H. P. McKean, A shallow water equation on the circle, Comm. Pure Appl. Math., 52 (1999), 949-982.doi: {10.1002/(SICI)1097-0312(199908)52:8<949::AID-CPA3>3.0.CO;2-D}.

    [18]

    A. Constantin and W. A. Strauss, Stability of peakons, Comm. Pure Appl. Math., 53 (2000), 603-610.doi: {10.1002/(SICI)1097-0312(200005)53:5<603::AID-CPA3>3.0.CO;2-L}.

    [19]

    A. Constantin and W. A. Strauss, Stability of the Camassa-Holm solitons, J. Nonl. Sci., 12 (2002), 415-422.doi: 10.1007/s00332-002-0517-x.

    [20]

    R. Danchin, A few remarks on the Camassa-Holm equation, Diff. Integ. Eqns., 14 (2001), 953-988.

    [21]

    R. Danchin, A note on well-posedness for Camassa-Holm equation, J. Diff. Eqns., 192 (2003), 429-444.doi: 10.1016/S0022-0396(03)00096-2.

    [22]

    R. Danchin and F. Fanelli, The well-posedness issue for the density-dependent Euler equations in endpoint Besov spaces, J. Math. Pures Appl., 96 (2011), 253-278.doi: 10.1016/j.matpur.2011.04.005.

    [23]

    R. Danchin and P. B. Mucha, A critical functional framework for the inhomogeneous Navier-Stokes equations in the half-space, J. Funct. Anal., 256 (2009), 881-927.doi: 10.1016/j.jfa.2008.11.019.

    [24]

    A. Fokas and B. Fuchssteiner, Symplectic structures, their Bäklund transformations and hereditray symmetries, Phys. D., 4 (1981), 47-66.doi: 10.1016/0167-2789(81)90004-X.

    [25]

    G. Gui and Y. Liu, On the Cauchy problem for the two-compenent Camassa-Holm system, Math. Z., 268 (2011), 45-66.doi: 10.1007/s00209-009-0660-2.

    [26]

    A. A. Himonas and C. Holliman, The Cauchy problem for the Novikov equation, Nonlinearity, 25 (2012), 449-479.doi: 10.1088/0951-7715/25/2/449.

    [27]

    A. A. Himonas and J. Holmes, Hölder continuity of the solution map for the Novikov equation, J. Math. Phys., 54 (2013), 061501, 11pp.doi: 10.1063/1.4807729.

    [28]

    A. A. Himonas and C. Holliman, The Cauchy problem for a Generalized Camassa-Holm equation, Adv. Diff. Eqns., 19 (2014), 161-200.

    [29]

    A. A. Himonas, G. Misiolek, G. Ponce and Y. Zhou, Persistence Properties and Unique Continuation of Solutions of the Camassa-Holm Equation, Commun. Math. Phys., 271 (2007), 511-522.doi: 10.1007/s00220-006-0172-4.

    [30]

    H. Holden and X. Raynaud, A convergent numerical scheme for the Camassa-Holm equation based on multipeakons, Discrete Continuous Dynam. Systems-A, 14 (2006), 505-523.

    [31]

    H. Holden and X. Raynaud, Dissipative solutions for the Camassa-Holm equation, Discrete Continuous Dynam. Systems-A, 24 (2009), 1047-1112.doi: 10.3934/dcds.2009.24.1047.

    [32]

    A. N. W. Hone and J. P. Wang, Integrable peakon equations with cubic nonlinearity, J. Phys. Appl. Math. Theor., 41 (2008), 372002, 10 pp.doi: 10.1088/1751-8113/41/37/372002.

    [33]

    A. N. W. Hone, H. Lundmark and J.Szmigielski, Explicit multipeakon solutions of Novikov's cubically nonlinear integrable Camassa-Holm equation, Dyn. Partial Diff. Eqns., 6 (2009), 253-289.doi: 10.4310/DPDE.2009.v6.n3.a3.

    [34]

    Y. A. Li and P. J. Olver, Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation, J. Diff. Eqns., 162 (2000), 27-63.doi: 10.1006/jdeq.1999.3683.

    [35]

    L. Ni and Y. Zhou, Well-posedness and persistence properties for the Novikov equation, J. Diff. Eqns., 250 (2011), 3002-3021.doi: 10.1016/j.jde.2011.01.030.

    [36]

    V. S. Novikov, Generalizations of the Camassa-Holm equation, J. Phys. Appl. Math. Theor., 42 (2009), 342002, 14 pp.doi: 10.1088/1751-8113/42/34/342002.

    [37]

    J. F. Toland, Stokes waves, Topol. Meth. Nonl., Anal., 7 (1996), 1-48.

    [38]

    M. Vishik, Hydrodynamics in Besov spaces, Arch. Rat. Mech. Anal., 145 (1998), 197-214.doi: 10.1007/s002050050128.

    [39]

    Z. Xin and P. Zhang, On the weak solutions to a shallow water equation, Comm. Pure Appl. Math., 53 (2000), 1411-1433.doi: {10.1002/1097-0312(200011)53:11<1411::AID-CPA4>3.0.CO;2-5}.

    [40]

    W. Yan, Y. Li and Y. Zhang, The Cauchy problem for the intergrable Novikov equation, J. Diff. Eqns., 20 (2013), 1157-1169.doi: 10.1016/j.jde.2012.03.015.

    [41]

    K. Yan and Z. Yin, On the Cauchy problem for a two-compnent Degasperis-Procesi system, J. Diff. Eqns., 252 (2012), 2131-2159.doi: 10.1016/j.jde.2011.08.003.

    [42]

    Y. Zhao, Y. Li and W. Yan, Local well-posedness and persistence property for the generalized Novikov equation, Discrete Continuous Dynam. Systems-A, 34 (2014), 803-820.doi: 10.3934/dcds.2014.34.803.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(170) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return