March  2015, 35(3): 891-907. doi: 10.3934/dcds.2015.35.891

Blow up of solutions of semilinear heat equations in non radial domains of $\mathbb{R}^2$

1. 

Dipartimento di Matematica, Università di Roma Tor Vergata, Via della Ricerca Scientica 1, 00133 Roma, Italy

2. 

Dipartimento di Matematica e Fisica, Seconda Università di Napoli, V.le Lincoln 5, 81100 Caserta, Italy

Received  February 2014 Revised  May 2014 Published  October 2014

We consider the semilinear heat equation \begin{equation}\label{problemAbstract}\left\{\begin{array}{ll}v_t-\Delta v= |v|^{p-1}v & \mbox{ in }\Omega\times (0,T)\\ v=0 & \mbox{ on }\partial \Omega\times (0,T)\\ v(0)=v_0 & \mbox{ in }\Omega \end{array}\right.\tag{$\mathcal P_p$} \end{equation} where $p>1$, $\Omega$ is a smooth bounded domain of $\mathbb{R}^2$, $T\in (0,+\infty]$ and $v_0$ belongs to a suitable space. We give general conditions for a family $u_p$ of sign-changing stationary solutions of ($\mathcal P_p$), under which the solution of ($\mathcal P_p$) with initial value $v_0=\lambda u_p$ blows up in finite time if $|\lambda-1|>0$ is sufficiently small and $p$ is sufficiently large. Since for $\lambda=1$ the solution is global, this shows that, in general, the set of the initial conditions for which the solution is global is not star-shaped with respect to the origin. In [5] this phenomenon has been previously observed in the case when the domain is a ball and the sign changing stationary solution is radially symmetric. Our conditions are more general and we provide examples of stationary solutions $u_p$ which are not radial and exhibit the same behavior.
Citation: Francesca De Marchis, Isabella Ianni. Blow up of solutions of semilinear heat equations in non radial domains of $\mathbb{R}^2$. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 891-907. doi: 10.3934/dcds.2015.35.891
References:
[1]

Adimurthi and M. Grossi, Asymptotic estimates for a two dimensional problem with polynomial nonlinearity,, Proc. Amer. Math. Soc., 132 (2004), 1013. doi: 10.1090/S0002-9939-03-07301-5. Google Scholar

[2]

T. Cazenave, F. Dickstein and F. B. Weissler, Sign-changing stationary solutions and blow up for the nonlinear heat equation in a ball,, Math Ann., 344 (2009), 431. doi: 10.1007/s00208-008-0312-6. Google Scholar

[3]

F. De Marchis, I. Ianni and F. Pacella, Sign changing solutions of Lane Emden problems with interior nodal line and semilinear heat equations,, Journal of Differential Equations, 254 (2013), 3596. doi: 10.1016/j.jde.2013.01.037. Google Scholar

[4]

F. De Marchis, I. Ianni and F. Pacella, Asymptotic analysis and sign changing bubble towers for Lane-Emden problems,, accepted for publication in Journal of the European Mathematical Society, (). Google Scholar

[5]

F. Dickstein, F. Pacella and B. Sciunzi, Sign-changing stationary solutions and blow up for the nonlinear heat equation in dimension two,, Journal of Evolution Equation, 14 (2014), 617. doi: 10.1007/s00028-014-0230-x. Google Scholar

[6]

P. Esposito, M. Musso and A. Pistoia, On the existence and profile of nodal solutions for a two-dimensional elliptic problem with large exponent in nonlinearity,, Proc. Lond. Math. Soc., 94 (2007), 497. doi: 10.1112/plms/pdl020. Google Scholar

[7]

M. Grossi, C. Grumiau and F. Pacella, Lane Emden problems: Asymptotic behavior of low energy nodal solutions,, Ann. Inst. H. Poincare Anal. Non Lineaire, 30 (2013), 121. doi: 10.1016/j.anihpc.2012.06.005. Google Scholar

[8]

M. Grossi, C. Grumiau and F. Pacella, Lane Emden problems with large exponents and singular Liouville equations,, Journal Math. Pure and Appl., 101 (2014), 735. doi: 10.1016/j.matpur.2013.06.011. Google Scholar

[9]

V. Marino, F. Pacella and B. Sciunzi, Blow-up of solutions of semilinear heat equations in general domains,, Comm. Cont. Math., 14 (2014), 617. doi: 10.1142/S0219199713500429. Google Scholar

[10]

P. Quittner and P. Souplet, Superlinear Parabolic Problems,, Birkhäuser Basel-Boston-Berlin, (2007). Google Scholar

[11]

X. Ren and J. Wei, Single-point condensation and least-energy solutions,, Proc. Amer. Math. Soc., 124 (1996), 111. doi: 10.1090/S0002-9939-96-03156-5. Google Scholar

show all references

References:
[1]

Adimurthi and M. Grossi, Asymptotic estimates for a two dimensional problem with polynomial nonlinearity,, Proc. Amer. Math. Soc., 132 (2004), 1013. doi: 10.1090/S0002-9939-03-07301-5. Google Scholar

[2]

T. Cazenave, F. Dickstein and F. B. Weissler, Sign-changing stationary solutions and blow up for the nonlinear heat equation in a ball,, Math Ann., 344 (2009), 431. doi: 10.1007/s00208-008-0312-6. Google Scholar

[3]

F. De Marchis, I. Ianni and F. Pacella, Sign changing solutions of Lane Emden problems with interior nodal line and semilinear heat equations,, Journal of Differential Equations, 254 (2013), 3596. doi: 10.1016/j.jde.2013.01.037. Google Scholar

[4]

F. De Marchis, I. Ianni and F. Pacella, Asymptotic analysis and sign changing bubble towers for Lane-Emden problems,, accepted for publication in Journal of the European Mathematical Society, (). Google Scholar

[5]

F. Dickstein, F. Pacella and B. Sciunzi, Sign-changing stationary solutions and blow up for the nonlinear heat equation in dimension two,, Journal of Evolution Equation, 14 (2014), 617. doi: 10.1007/s00028-014-0230-x. Google Scholar

[6]

P. Esposito, M. Musso and A. Pistoia, On the existence and profile of nodal solutions for a two-dimensional elliptic problem with large exponent in nonlinearity,, Proc. Lond. Math. Soc., 94 (2007), 497. doi: 10.1112/plms/pdl020. Google Scholar

[7]

M. Grossi, C. Grumiau and F. Pacella, Lane Emden problems: Asymptotic behavior of low energy nodal solutions,, Ann. Inst. H. Poincare Anal. Non Lineaire, 30 (2013), 121. doi: 10.1016/j.anihpc.2012.06.005. Google Scholar

[8]

M. Grossi, C. Grumiau and F. Pacella, Lane Emden problems with large exponents and singular Liouville equations,, Journal Math. Pure and Appl., 101 (2014), 735. doi: 10.1016/j.matpur.2013.06.011. Google Scholar

[9]

V. Marino, F. Pacella and B. Sciunzi, Blow-up of solutions of semilinear heat equations in general domains,, Comm. Cont. Math., 14 (2014), 617. doi: 10.1142/S0219199713500429. Google Scholar

[10]

P. Quittner and P. Souplet, Superlinear Parabolic Problems,, Birkhäuser Basel-Boston-Berlin, (2007). Google Scholar

[11]

X. Ren and J. Wei, Single-point condensation and least-energy solutions,, Proc. Amer. Math. Soc., 124 (1996), 111. doi: 10.1090/S0002-9939-96-03156-5. Google Scholar

[1]

Qiong Chen, Chunlai Mu, Zhaoyin Xiang. Blow-up and asymptotic behavior of solutions to a semilinear integrodifferential system. Communications on Pure & Applied Analysis, 2006, 5 (3) : 435-446. doi: 10.3934/cpaa.2006.5.435

[2]

Guirong Liu, Yuanwei Qi. Sign-changing solutions of a quasilinear heat equation with a source term. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1389-1414. doi: 10.3934/dcdsb.2013.18.1389

[3]

Miaoqing Tian, Sining Zheng. Global boundedness versus finite-time blow-up of solutions to a quasilinear fully parabolic Keller-Segel system of two species. Communications on Pure & Applied Analysis, 2016, 15 (1) : 243-260. doi: 10.3934/cpaa.2016.15.243

[4]

Xiumei Deng, Jun Zhou. Global existence and blow-up of solutions to a semilinear heat equation with singular potential and logarithmic nonlinearity. Communications on Pure & Applied Analysis, 2020, 19 (2) : 923-939. doi: 10.3934/cpaa.2020042

[5]

Yuta Wakasugi. Blow-up of solutions to the one-dimensional semilinear wave equation with damping depending on time and space variables. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3831-3846. doi: 10.3934/dcds.2014.34.3831

[6]

Manuel del Pino, Monica Musso, Juncheng Wei, Yifu Zhou. Type Ⅱ finite time blow-up for the energy critical heat equation in $ \mathbb{R}^4 $. Discrete & Continuous Dynamical Systems - A, 2019, 0 (0) : 0-0. doi: 10.3934/dcds.2020052

[7]

Bin Guo, Wenjie Gao. Finite-time blow-up and extinction rates of solutions to an initial Neumann problem involving the $p(x,t)-Laplace$ operator and a non-local term. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 715-730. doi: 10.3934/dcds.2016.36.715

[8]

Alexander Gladkov. Blow-up problem for semilinear heat equation with nonlinear nonlocal Neumann boundary condition. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2053-2068. doi: 10.3934/cpaa.2017101

[9]

Yohei Fujishima. On the effect of higher order derivatives of initial data on the blow-up set for a semilinear heat equation. Communications on Pure & Applied Analysis, 2018, 17 (2) : 449-475. doi: 10.3934/cpaa.2018025

[10]

Van Tien Nguyen. On the blow-up results for a class of strongly perturbed semilinear heat equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3585-3626. doi: 10.3934/dcds.2015.35.3585

[11]

Frank Merle, Hatem Zaag. O.D.E. type behavior of blow-up solutions of nonlinear heat equations. Discrete & Continuous Dynamical Systems - A, 2002, 8 (2) : 435-450. doi: 10.3934/dcds.2002.8.435

[12]

Gabriele Cora, Alessandro Iacopetti. Sign-changing bubble-tower solutions to fractional semilinear elliptic problems. Discrete & Continuous Dynamical Systems - A, 2019, 39 (10) : 6149-6173. doi: 10.3934/dcds.2019268

[13]

Jun Yang, Yaotian Shen. Weighted Sobolev-Hardy spaces and sign-changing solutions of degenerate elliptic equation. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2565-2575. doi: 10.3934/cpaa.2013.12.2565

[14]

Keng Deng, Zhihua Dong. Blow-up for the heat equation with a general memory boundary condition. Communications on Pure & Applied Analysis, 2012, 11 (5) : 2147-2156. doi: 10.3934/cpaa.2012.11.2147

[15]

Yohei Fujishima. Blow-up set for a superlinear heat equation and pointedness of the initial data. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4617-4645. doi: 10.3934/dcds.2014.34.4617

[16]

Zhijun Zhang, Ling Mi. Blow-up rates of large solutions for semilinear elliptic equations. Communications on Pure & Applied Analysis, 2011, 10 (6) : 1733-1745. doi: 10.3934/cpaa.2011.10.1733

[17]

Zhengping Wang, Huan-Song Zhou. Radial sign-changing solution for fractional Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 499-508. doi: 10.3934/dcds.2016.36.499

[18]

Jong-Shenq Guo. Blow-up behavior for a quasilinear parabolic equation with nonlinear boundary condition. Discrete & Continuous Dynamical Systems - A, 2007, 18 (1) : 71-84. doi: 10.3934/dcds.2007.18.71

[19]

M. Ben Ayed, Kamal Ould Bouh. Nonexistence results of sign-changing solutions to a supercritical nonlinear problem. Communications on Pure & Applied Analysis, 2008, 7 (5) : 1057-1075. doi: 10.3934/cpaa.2008.7.1057

[20]

Yohei Sato, Zhi-Qiang Wang. On the least energy sign-changing solutions for a nonlinear elliptic system. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 2151-2164. doi: 10.3934/dcds.2015.35.2151

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (11)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]