    March  2015, 35(3): 891-907. doi: 10.3934/dcds.2015.35.891

## Blow up of solutions of semilinear heat equations in non radial domains of $\mathbb{R}^2$

 1 Dipartimento di Matematica, Università di Roma Tor Vergata, Via della Ricerca Scientica 1, 00133 Roma, Italy 2 Dipartimento di Matematica e Fisica, Seconda Università di Napoli, V.le Lincoln 5, 81100 Caserta, Italy

Received  February 2014 Revised  May 2014 Published  October 2014

We consider the semilinear heat equation \begin{equation}\label{problemAbstract}\left\{\begin{array}{ll}v_t-\Delta v= |v|^{p-1}v & \mbox{ in }\Omega\times (0,T)\\ v=0 & \mbox{ on }\partial \Omega\times (0,T)\\ v(0)=v_0 & \mbox{ in }\Omega \end{array}\right.\tag{$\mathcal P_p$} \end{equation} where $p>1$, $\Omega$ is a smooth bounded domain of $\mathbb{R}^2$, $T\in (0,+\infty]$ and $v_0$ belongs to a suitable space. We give general conditions for a family $u_p$ of sign-changing stationary solutions of ($\mathcal P_p$), under which the solution of ($\mathcal P_p$) with initial value $v_0=\lambda u_p$ blows up in finite time if $|\lambda-1|>0$ is sufficiently small and $p$ is sufficiently large. Since for $\lambda=1$ the solution is global, this shows that, in general, the set of the initial conditions for which the solution is global is not star-shaped with respect to the origin. In  this phenomenon has been previously observed in the case when the domain is a ball and the sign changing stationary solution is radially symmetric. Our conditions are more general and we provide examples of stationary solutions $u_p$ which are not radial and exhibit the same behavior.
Citation: Francesca De Marchis, Isabella Ianni. Blow up of solutions of semilinear heat equations in non radial domains of $\mathbb{R}^2$. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 891-907. doi: 10.3934/dcds.2015.35.891
##### References:
  Adimurthi and M. Grossi, Asymptotic estimates for a two dimensional problem with polynomial nonlinearity,, Proc. Amer. Math. Soc., 132 (2004), 1013.  doi: 10.1090/S0002-9939-03-07301-5.  Google Scholar  T. Cazenave, F. Dickstein and F. B. Weissler, Sign-changing stationary solutions and blow up for the nonlinear heat equation in a ball,, Math Ann., 344 (2009), 431.  doi: 10.1007/s00208-008-0312-6.  Google Scholar  F. De Marchis, I. Ianni and F. Pacella, Sign changing solutions of Lane Emden problems with interior nodal line and semilinear heat equations,, Journal of Differential Equations, 254 (2013), 3596.  doi: 10.1016/j.jde.2013.01.037.  Google Scholar  F. De Marchis, I. Ianni and F. Pacella, Asymptotic analysis and sign changing bubble towers for Lane-Emden problems,, accepted for publication in Journal of the European Mathematical Society, ().   Google Scholar  F. Dickstein, F. Pacella and B. Sciunzi, Sign-changing stationary solutions and blow up for the nonlinear heat equation in dimension two,, Journal of Evolution Equation, 14 (2014), 617.  doi: 10.1007/s00028-014-0230-x.  Google Scholar  P. Esposito, M. Musso and A. Pistoia, On the existence and profile of nodal solutions for a two-dimensional elliptic problem with large exponent in nonlinearity,, Proc. Lond. Math. Soc., 94 (2007), 497.  doi: 10.1112/plms/pdl020.  Google Scholar  M. Grossi, C. Grumiau and F. Pacella, Lane Emden problems: Asymptotic behavior of low energy nodal solutions,, Ann. Inst. H. Poincare Anal. Non Lineaire, 30 (2013), 121.  doi: 10.1016/j.anihpc.2012.06.005.  Google Scholar  M. Grossi, C. Grumiau and F. Pacella, Lane Emden problems with large exponents and singular Liouville equations,, Journal Math. Pure and Appl., 101 (2014), 735.  doi: 10.1016/j.matpur.2013.06.011.  Google Scholar  V. Marino, F. Pacella and B. Sciunzi, Blow-up of solutions of semilinear heat equations in general domains,, Comm. Cont. Math., 14 (2014), 617.  doi: 10.1142/S0219199713500429. Google Scholar  P. Quittner and P. Souplet, Superlinear Parabolic Problems,, Birkhäuser Basel-Boston-Berlin, (2007). Google Scholar  X. Ren and J. Wei, Single-point condensation and least-energy solutions,, Proc. Amer. Math. Soc., 124 (1996), 111.  doi: 10.1090/S0002-9939-96-03156-5.  Google Scholar

show all references

##### References:
  Adimurthi and M. Grossi, Asymptotic estimates for a two dimensional problem with polynomial nonlinearity,, Proc. Amer. Math. Soc., 132 (2004), 1013.  doi: 10.1090/S0002-9939-03-07301-5.  Google Scholar  T. Cazenave, F. Dickstein and F. B. Weissler, Sign-changing stationary solutions and blow up for the nonlinear heat equation in a ball,, Math Ann., 344 (2009), 431.  doi: 10.1007/s00208-008-0312-6.  Google Scholar  F. De Marchis, I. Ianni and F. Pacella, Sign changing solutions of Lane Emden problems with interior nodal line and semilinear heat equations,, Journal of Differential Equations, 254 (2013), 3596.  doi: 10.1016/j.jde.2013.01.037.  Google Scholar  F. De Marchis, I. Ianni and F. Pacella, Asymptotic analysis and sign changing bubble towers for Lane-Emden problems,, accepted for publication in Journal of the European Mathematical Society, ().   Google Scholar  F. Dickstein, F. Pacella and B. Sciunzi, Sign-changing stationary solutions and blow up for the nonlinear heat equation in dimension two,, Journal of Evolution Equation, 14 (2014), 617.  doi: 10.1007/s00028-014-0230-x.  Google Scholar  P. Esposito, M. Musso and A. Pistoia, On the existence and profile of nodal solutions for a two-dimensional elliptic problem with large exponent in nonlinearity,, Proc. Lond. Math. Soc., 94 (2007), 497.  doi: 10.1112/plms/pdl020.  Google Scholar  M. Grossi, C. Grumiau and F. Pacella, Lane Emden problems: Asymptotic behavior of low energy nodal solutions,, Ann. Inst. H. Poincare Anal. Non Lineaire, 30 (2013), 121.  doi: 10.1016/j.anihpc.2012.06.005.  Google Scholar  M. Grossi, C. Grumiau and F. Pacella, Lane Emden problems with large exponents and singular Liouville equations,, Journal Math. Pure and Appl., 101 (2014), 735.  doi: 10.1016/j.matpur.2013.06.011.  Google Scholar  V. Marino, F. Pacella and B. Sciunzi, Blow-up of solutions of semilinear heat equations in general domains,, Comm. Cont. Math., 14 (2014), 617.  doi: 10.1142/S0219199713500429. Google Scholar  P. Quittner and P. Souplet, Superlinear Parabolic Problems,, Birkhäuser Basel-Boston-Berlin, (2007). Google Scholar  X. Ren and J. Wei, Single-point condensation and least-energy solutions,, Proc. Amer. Math. Soc., 124 (1996), 111.  doi: 10.1090/S0002-9939-96-03156-5.  Google Scholar
  Qiong Chen, Chunlai Mu, Zhaoyin Xiang. Blow-up and asymptotic behavior of solutions to a semilinear integrodifferential system. Communications on Pure & Applied Analysis, 2006, 5 (3) : 435-446. doi: 10.3934/cpaa.2006.5.435  Guirong Liu, Yuanwei Qi. Sign-changing solutions of a quasilinear heat equation with a source term. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1389-1414. doi: 10.3934/dcdsb.2013.18.1389  Miaoqing Tian, Sining Zheng. Global boundedness versus finite-time blow-up of solutions to a quasilinear fully parabolic Keller-Segel system of two species. Communications on Pure & Applied Analysis, 2016, 15 (1) : 243-260. doi: 10.3934/cpaa.2016.15.243  Xiumei Deng, Jun Zhou. Global existence and blow-up of solutions to a semilinear heat equation with singular potential and logarithmic nonlinearity. Communications on Pure & Applied Analysis, 2020, 19 (2) : 923-939. doi: 10.3934/cpaa.2020042  Yuta Wakasugi. Blow-up of solutions to the one-dimensional semilinear wave equation with damping depending on time and space variables. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3831-3846. doi: 10.3934/dcds.2014.34.3831  Manuel del Pino, Monica Musso, Juncheng Wei, Yifu Zhou. Type Ⅱ finite time blow-up for the energy critical heat equation in $\mathbb{R}^4$. Discrete & Continuous Dynamical Systems - A, 2019, 0 (0) : 0-0. doi: 10.3934/dcds.2020052  Bin Guo, Wenjie Gao. Finite-time blow-up and extinction rates of solutions to an initial Neumann problem involving the $p(x,t)-Laplace$ operator and a non-local term. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 715-730. doi: 10.3934/dcds.2016.36.715  Alexander Gladkov. Blow-up problem for semilinear heat equation with nonlinear nonlocal Neumann boundary condition. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2053-2068. doi: 10.3934/cpaa.2017101  Yohei Fujishima. On the effect of higher order derivatives of initial data on the blow-up set for a semilinear heat equation. Communications on Pure & Applied Analysis, 2018, 17 (2) : 449-475. doi: 10.3934/cpaa.2018025  Van Tien Nguyen. On the blow-up results for a class of strongly perturbed semilinear heat equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3585-3626. doi: 10.3934/dcds.2015.35.3585  Frank Merle, Hatem Zaag. O.D.E. type behavior of blow-up solutions of nonlinear heat equations. Discrete & Continuous Dynamical Systems - A, 2002, 8 (2) : 435-450. doi: 10.3934/dcds.2002.8.435  Gabriele Cora, Alessandro Iacopetti. Sign-changing bubble-tower solutions to fractional semilinear elliptic problems. Discrete & Continuous Dynamical Systems - A, 2019, 39 (10) : 6149-6173. doi: 10.3934/dcds.2019268  Xiaoqiang Dai, Chao Yang, Shaobin Huang, Tao Yu, Yuanran Zhu. Finite time blow-up for a wave equation with dynamic boundary condition at critical and high energy levels in control systems. Electronic Research Archive, 2020, 28 (1) : 91-102. doi: 10.3934/era.2020006  Jun Yang, Yaotian Shen. Weighted Sobolev-Hardy spaces and sign-changing solutions of degenerate elliptic equation. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2565-2575. doi: 10.3934/cpaa.2013.12.2565  Keng Deng, Zhihua Dong. Blow-up for the heat equation with a general memory boundary condition. Communications on Pure & Applied Analysis, 2012, 11 (5) : 2147-2156. doi: 10.3934/cpaa.2012.11.2147  Yohei Fujishima. Blow-up set for a superlinear heat equation and pointedness of the initial data. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4617-4645. doi: 10.3934/dcds.2014.34.4617  Zhijun Zhang, Ling Mi. Blow-up rates of large solutions for semilinear elliptic equations. Communications on Pure & Applied Analysis, 2011, 10 (6) : 1733-1745. doi: 10.3934/cpaa.2011.10.1733  Zhengping Wang, Huan-Song Zhou. Radial sign-changing solution for fractional Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 499-508. doi: 10.3934/dcds.2016.36.499  Jong-Shenq Guo. Blow-up behavior for a quasilinear parabolic equation with nonlinear boundary condition. Discrete & Continuous Dynamical Systems - A, 2007, 18 (1) : 71-84. doi: 10.3934/dcds.2007.18.71  M. Ben Ayed, Kamal Ould Bouh. Nonexistence results of sign-changing solutions to a supercritical nonlinear problem. Communications on Pure & Applied Analysis, 2008, 7 (5) : 1057-1075. doi: 10.3934/cpaa.2008.7.1057

2018 Impact Factor: 1.143