Citation: |
[1] |
B. J. Bayly, Three-dimensional instabilities in quasi-two dimensional inviscid flows, in Nonlinear Wave Interactions in Fluids, edited by R. W. Miksad et al., ASME, New York, (1987), 71-77. |
[2] |
A. Bennett, Lagrangian Fluid Dynamics, Cambridge University Press, Cambridge, 2006.doi: 10.1017/CBO9780511734939. |
[3] |
A. Constantin, On the deep water wave motion, J. Phys. A, 34 (2001), 1405-1417.doi: 10.1088/0305-4470/34/7/313. |
[4] |
A. Constantin, Edge waves along a sloping beach, J. Phys. A, 34 (2001), 9723-9731.doi: 10.1088/0305-4470/34/45/311. |
[5] |
A. Constantin, The trajectories of particles in Stokes waves, Invent. Math., 166 (2006), 523-535.doi: 10.1007/s00222-006-0002-5. |
[6] |
A. Constantin, Nonlinear Water Waves with Applications to Wave-Current Interactions and Tsunamis, CBMS-NSF Conference Series in Applied Mathematics, Vol. 81, SIAM, Philadelphia, 2011.doi: 10.1137/1.9781611971873. |
[7] |
A. Constantin, An exact solution for equatorially trapped waves, J. Geophys. Res., 117 (2012), C05029.doi: 10.1029/2012JC007879. |
[8] |
A. Constantin, On the modelling of Equatorial waves, Geophys. Res. Lett., 39 (2012), L05602.doi: 10.1029/2012GL051169. |
[9] |
A. Constantin, Some three-dimensional nonlinear Equatorial flows, J. Phys. Oceanogr., 43 (2013), 165-175.doi: 10.1175/JPO-D-12-062.1. |
[10] |
A. Constantin, On equatorial wind waves, Differential and Integral equations, 26 (2013), 237-252. |
[11] |
A. Constantin, Some nonlinear, equatorially trapped, nonhydrostatic internal geophysical waves, J. Phys. Oceanogr., 44 (2014), 781-789.doi: 10.1175/JPO-D-13-0174.1. |
[12] |
A. Constantin and P. Germain, Instability of some equatorially trapped waves, J. Geophys. Res. Oceans, 118 (2013), 2802-2810.doi: 10.1002/jgrc.20219. |
[13] |
A. Constantin and W. Strauss, Pressure beneath a Stokes wave, Comm. Pure Appl. Math., 63 (2010), 533-557.doi: 10.1002/cpa.20299. |
[14] |
B. Cushman-Roisin and J.-M. Beckers, Introduction to Geophysical Fluid Dynamics: Physical and Numerical Aspects, Academic, Waltham, Mass., 2011. |
[15] |
P. G. Drazin, Introduction to Hydrodynamic Stability, Cambridge University Press, Cambridge, 2002.doi: 10.1017/CBO9780511809064. |
[16] |
P. G. Drazin and W. H. Reid, Hydrodynamic Stability, Cambridge University Press, Cambridge, 2004.doi: 10.1017/CBO9780511616938. |
[17] |
A. V. Fedorov and J. N. Brown, Equatorial waves, in Encyclopedia of Ocean Sciences, edited by J. Steele, Academic, San Diego, Calif., (2009), 271-287.doi: 10.1016/B978-012374473-9.00610-X. |
[18] |
S. Friedlander and M. M. Vishik, Instability criteria for the flow of an inviscid incompressible fluid, Phys. Rev. Lett., 66 (1991), 2204-2206.doi: 10.1103/PhysRevLett.66.2204. |
[19] |
S. Friedlander and V. Yudovich, Instabilities in fluid motion, Not. Am. Math. Soc., 46 (1999), 1358-1367. |
[20] |
S. Friedlander, Lectures on stability and instability of an ideal fluid, in Hyperbolic Equations and Frequency Interactions, IAS/Park City Math. Ser. Amer. Math. Soc., Providence, RI, 5 (1999), 227-304. |
[21] |
I. Gallagher and L. Saint-Raymond, On the influence of the Earth's rotation on geophysical flows, in Handbook of Mathematical Fluid Mechanics, edited by S. Friedlander and D. Serre, North-Holland, Amsterdam, 4 (2007), 201-329. |
[22] |
F. Genoud and D. Henry, Instability of equatorial water waves with an underlying current, J. Math. Fluid Mech., (2014), 1-2.doi: 10.1007/s00021-014-0175-4. |
[23] |
F. Gerstner, Theorie der Wellen samt einer daraus abgeleiteten Theorie der Deichprofile, Ann. Phys., 2 (1809), 412-445. |
[24] |
D. Henry, On the deep-water Stokes flow, Int. Math. Res. Not. IMRN, (2008), 7 pp. |
[25] |
D. Henry, On Gerstner's water wave, J. Nonl. Math. Phys., 15 (2008), 87-95.doi: 10.2991/jnmp.2008.15.S2.7. |
[26] |
D. Henry, An exact solution for equatorial geophysical water waves with an underlying current, Eur. J. Mech. B Fluids, 38 (2013), 18-21.doi: 10.1016/j.euromechflu.2012.10.001. |
[27] |
D. Henry and A. Matioc, On the existence of equatorial wind waves, Nonlinear Anal., 101 (2014), 113-123.doi: 10.1016/j.na.2014.01.018. |
[28] |
H.-C. Hsu, An exact solution of equatorial waves, Monatsh. Math., (2014), 1-2.doi: 10.1007/s00605-014-0618-2. |
[29] |
H.-C. Hsu, An exact solution for nonlinear internal equatorial waves in the $f-$plane approximation, J. Math. Fluid Mech., 16 (2014), 463-471.doi: 10.1007/s00021-014-0168-3. |
[30] |
H.-C. Hsu, Some nonlinear internal equatorial waves with a strong underlying current, Appl. Math. Letters, 34 (2014), 1-6.doi: 10.1016/j.aml.2014.03.005. |
[31] |
T. Izumo, The equatorial current, meridional overturning circulation, and their roles in mass and heat exchanges during the El Niño events in the tropical Pacific Ocean, Ocean Dyn., 55 (2005), 110-123. |
[32] |
S. Leblanc, Local stability of Gerstner's waves, J. Fluid Mech., 506 (2004), 245-254.doi: 10.1017/S0022112004008444. |
[33] |
A. Lifschitz and E. Hameiri, Local stability conditions in fluid dynamics, Phys. Fluids, 3 (1991), 2644-2651.doi: 10.1063/1.858153. |
[34] |
A. V. Matioc, An exact solution for geophysical equatorial edge waves over a sloping beach, J. Phys. A, 45 (2012), 365501, 10pp.doi: 10.1088/1751-8113/45/36/365501. |
[35] |
R. Stuhlmeier, On edge waves in stratified water along a sloping beach, J. Nonlinear Math. Phys., 18 (2011), 127-137.doi: 10.1142/S1402925111001210. |