March  2015, 35(3): 967-983. doi: 10.3934/dcds.2015.35.967

Derivative formula of the potential function for generalized SRB measures of hyperbolic systems of codimension one

1. 

Department of Mathematics, Wake Forest University, Winston Salem, NC 27109

Received  October 2013 Revised  July 2014 Published  October 2014

Under the condition that unstable manifolds are one dimensional, the derivative formula of the potential function of the generalized SRB measure with respect to the underlying dynamical system is extended from the hyperbolic attractor case to the general case when the hyperbolic set intersecting with unstable manifolds is a Cantor set. It leads to derivative formulas of objects and quantities that characterize a uniformly hyperbolic system, including the generalized SBR measure and its entropy, the root of the Bowen's equation, and the Hausdorff dimension of the hyperbolic set on a dimension two Riemannian manifold.
Citation: Miaohua Jiang. Derivative formula of the potential function for generalized SRB measures of hyperbolic systems of codimension one. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 967-983. doi: 10.3934/dcds.2015.35.967
References:
[1]

D. Anosov and Y. Sinai, Certain smooth ergodic systems,, Russian Math. Surveys, 22 (1967), 107.   Google Scholar

[2]

L. Barreira, Thermodynamic Formalism and Applications to Dimension Theory, Progress in Mathematics, 294, Birkhäuser/Springer Basel AG, (2011).  doi: 10.1007/978-3-0348-0206-2.  Google Scholar

[3]

L. Barreira and Y. Pesin, Nonuniform Hyperbolicity, Encyclopedia of Mathematics and its Applications, 115, Cambridge University Press, (2007).  doi: 10.1017/CBO9781107326026.  Google Scholar

[4]

V. Baladi and D. Smania, Linear response formula for piecewise expanding unimodal maps,, Nonlinearity, 21 (2008), 677.  doi: 10.1088/0951-7715/21/4/003.  Google Scholar

[5]

V. Baladi and D. Smania, Linear response for smooth deformations of generic nonuniformly hyperbolic unimodal maps,, Ann. Sci. Éc. Norm. Supér. (4), 45 (2012), 861.   Google Scholar

[6]

D. Dolgopyat, On differentiability of SRB states for partially hyperbolic systems,, Invent. Math., 155 (2004), 389.  doi: 10.1007/s00222-003-0324-5.  Google Scholar

[7]

S. Gouëzel and C. Liverani, Banach spaces adapted to Anosov systems,, Ergodic Theory Dynam. Systems, 26 (2006), 189.  doi: 10.1017/S0143385705000374.  Google Scholar

[8]

S. Gouëzel and C. Liverani, Compact locally maximal hyperbolic sets for smooth maps: Fine statistical properties,, J. Differential Geom., 79 (2008), 433.   Google Scholar

[9]

M. Jiang, Differentiating potential functions of SRB measures on hyperbolic attractors,, Ergodic Theory Dynam. Systems, 32 (2012), 1350.  doi: 10.1017/S0143385711000241.  Google Scholar

[10]

M. Jiang and R. de la Llave, Smooth dependence of thermodynamic limits of SRB measures,, Comm. Math. Physics, 211 (2000), 303.  doi: 10.1007/s002200050814.  Google Scholar

[11]

M. Jiang and R. de la Llave, Linear response function for coupled hyperbolic attractors,, Comm. Math. Phys., 261 (2006), 379.  doi: 10.1007/s00220-005-1446-y.  Google Scholar

[12]

A. Katok and B. Hasselblatt, Introduction to the Modern Theorey of Dynamical Systems,, Cambridge University Press, (1995).  doi: 10.1017/CBO9780511809187.  Google Scholar

[13]

R. Mañé, Erodic Theory and Differentiable Dynamics,, Springer-Verlag, (1987).  doi: 10.1007/978-3-642-70335-5.  Google Scholar

[14]

A. A. Pinto and D. A. Rand, Smoothness of holonomies for codimension 1 hyperbolic dynamics,, Bull. London Math. Soc., 34 (2002), 341.  doi: 10.1112/S0024609301008670.  Google Scholar

[15]

M. Pollicott and H. Weiss, The dimensions of some self-affine limit sets in the plane and hyperbolic sets,, J. Statist. Phys., 77 (1994), 841.  doi: 10.1007/BF02179463.  Google Scholar

[16]

C. Pugh, M. Viana and A. Wilkinson, Absolute continuity of foliations,, IMPA preprint, (2007).   Google Scholar

[17]

D. Ruelle, Differentiation of SRB States,, Commun. Math. Phys., 187 (1997), 227.  doi: 10.1007/s002200050134.  Google Scholar

[18]

D. Ruelle, Smooth dynamics and new theoretical ideas in nonequilibrium statistical mechanics,, J. Statist. Phys., 95 (1999), 393.  doi: 10.1023/A:1004593915069.  Google Scholar

[19]

D. Ruelle, Thermodynamic Formalism,, The mathematical structures of equilibrium statistical mechanics. Second edition. Cambridge Mathematical Library. Cambridge University Press, (2004).   Google Scholar

[20]

Y. G. Sinai, Topics in Ergodic Theory, Princeton Mathematical Series, 44, Princeton University Press, (1994).   Google Scholar

[21]

J. Schmeling, Hölder continuity of the holonomy maps for hyperbolic basic sets. II,, Math. Nachr., 170 (1994), 211.  doi: 10.1002/mana.19941700116.  Google Scholar

show all references

References:
[1]

D. Anosov and Y. Sinai, Certain smooth ergodic systems,, Russian Math. Surveys, 22 (1967), 107.   Google Scholar

[2]

L. Barreira, Thermodynamic Formalism and Applications to Dimension Theory, Progress in Mathematics, 294, Birkhäuser/Springer Basel AG, (2011).  doi: 10.1007/978-3-0348-0206-2.  Google Scholar

[3]

L. Barreira and Y. Pesin, Nonuniform Hyperbolicity, Encyclopedia of Mathematics and its Applications, 115, Cambridge University Press, (2007).  doi: 10.1017/CBO9781107326026.  Google Scholar

[4]

V. Baladi and D. Smania, Linear response formula for piecewise expanding unimodal maps,, Nonlinearity, 21 (2008), 677.  doi: 10.1088/0951-7715/21/4/003.  Google Scholar

[5]

V. Baladi and D. Smania, Linear response for smooth deformations of generic nonuniformly hyperbolic unimodal maps,, Ann. Sci. Éc. Norm. Supér. (4), 45 (2012), 861.   Google Scholar

[6]

D. Dolgopyat, On differentiability of SRB states for partially hyperbolic systems,, Invent. Math., 155 (2004), 389.  doi: 10.1007/s00222-003-0324-5.  Google Scholar

[7]

S. Gouëzel and C. Liverani, Banach spaces adapted to Anosov systems,, Ergodic Theory Dynam. Systems, 26 (2006), 189.  doi: 10.1017/S0143385705000374.  Google Scholar

[8]

S. Gouëzel and C. Liverani, Compact locally maximal hyperbolic sets for smooth maps: Fine statistical properties,, J. Differential Geom., 79 (2008), 433.   Google Scholar

[9]

M. Jiang, Differentiating potential functions of SRB measures on hyperbolic attractors,, Ergodic Theory Dynam. Systems, 32 (2012), 1350.  doi: 10.1017/S0143385711000241.  Google Scholar

[10]

M. Jiang and R. de la Llave, Smooth dependence of thermodynamic limits of SRB measures,, Comm. Math. Physics, 211 (2000), 303.  doi: 10.1007/s002200050814.  Google Scholar

[11]

M. Jiang and R. de la Llave, Linear response function for coupled hyperbolic attractors,, Comm. Math. Phys., 261 (2006), 379.  doi: 10.1007/s00220-005-1446-y.  Google Scholar

[12]

A. Katok and B. Hasselblatt, Introduction to the Modern Theorey of Dynamical Systems,, Cambridge University Press, (1995).  doi: 10.1017/CBO9780511809187.  Google Scholar

[13]

R. Mañé, Erodic Theory and Differentiable Dynamics,, Springer-Verlag, (1987).  doi: 10.1007/978-3-642-70335-5.  Google Scholar

[14]

A. A. Pinto and D. A. Rand, Smoothness of holonomies for codimension 1 hyperbolic dynamics,, Bull. London Math. Soc., 34 (2002), 341.  doi: 10.1112/S0024609301008670.  Google Scholar

[15]

M. Pollicott and H. Weiss, The dimensions of some self-affine limit sets in the plane and hyperbolic sets,, J. Statist. Phys., 77 (1994), 841.  doi: 10.1007/BF02179463.  Google Scholar

[16]

C. Pugh, M. Viana and A. Wilkinson, Absolute continuity of foliations,, IMPA preprint, (2007).   Google Scholar

[17]

D. Ruelle, Differentiation of SRB States,, Commun. Math. Phys., 187 (1997), 227.  doi: 10.1007/s002200050134.  Google Scholar

[18]

D. Ruelle, Smooth dynamics and new theoretical ideas in nonequilibrium statistical mechanics,, J. Statist. Phys., 95 (1999), 393.  doi: 10.1023/A:1004593915069.  Google Scholar

[19]

D. Ruelle, Thermodynamic Formalism,, The mathematical structures of equilibrium statistical mechanics. Second edition. Cambridge Mathematical Library. Cambridge University Press, (2004).   Google Scholar

[20]

Y. G. Sinai, Topics in Ergodic Theory, Princeton Mathematical Series, 44, Princeton University Press, (1994).   Google Scholar

[21]

J. Schmeling, Hölder continuity of the holonomy maps for hyperbolic basic sets. II,, Math. Nachr., 170 (1994), 211.  doi: 10.1002/mana.19941700116.  Google Scholar

[1]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[2]

Russell Ricks. The unique measure of maximal entropy for a compact rank one locally CAT(0) space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 507-523. doi: 10.3934/dcds.2020266

[3]

Yuanfen Xiao. Mean Li-Yorke chaotic set along polynomial sequence with full Hausdorff dimension for $ \beta $-transformation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 525-536. doi: 10.3934/dcds.2020267

[4]

Yi-Hsuan Lin, Gen Nakamura, Roland Potthast, Haibing Wang. Duality between range and no-response tests and its application for inverse problems. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020072

[5]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[6]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[7]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[8]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[9]

Harrison Bray. Ergodicity of Bowen–Margulis measure for the Benoist 3-manifolds. Journal of Modern Dynamics, 2020, 16: 305-329. doi: 10.3934/jmd.2020011

[10]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[11]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[12]

Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHUM approach. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020055

[13]

Noufel Frikha, Valentin Konakov, Stéphane Menozzi. Well-posedness of some non-linear stable driven SDEs. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 849-898. doi: 10.3934/dcds.2020302

[14]

Giulia Luise, Giuseppe Savaré. Contraction and regularizing properties of heat flows in metric measure spaces. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 273-297. doi: 10.3934/dcdss.2020327

[15]

Liping Tang, Ying Gao. Some properties of nonconvex oriented distance function and applications to vector optimization problems. Journal of Industrial & Management Optimization, 2021, 17 (1) : 485-500. doi: 10.3934/jimo.2020117

[16]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020076

[17]

Noriyoshi Fukaya. Uniqueness and nondegeneracy of ground states for nonlinear Schrödinger equations with attractive inverse-power potential. Communications on Pure & Applied Analysis, 2021, 20 (1) : 121-143. doi: 10.3934/cpaa.2020260

[18]

Kai Yang. Scattering of the focusing energy-critical NLS with inverse square potential in the radial case. Communications on Pure & Applied Analysis, 2021, 20 (1) : 77-99. doi: 10.3934/cpaa.2020258

[19]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

[20]

Annegret Glitzky, Matthias Liero, Grigor Nika. Dimension reduction of thermistor models for large-area organic light-emitting diodes. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020460

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (42)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]