• Previous Article
    On the quenching behaviour of a semilinear wave equation modelling MEMS technology
  • DCDS Home
  • This Issue
  • Next Article
    Derivative formula of the potential function for generalized SRB measures of hyperbolic systems of codimension one
March  2015, 35(3): 985-1008. doi: 10.3934/dcds.2015.35.985

Attractors and their properties for a class of nonlocal extensible beams

1. 

Department of Mathematics, State University of Londrina, Londrina, 86057-970, Brazil

2. 

Center of exact sciences, State University of Mato Grosso do Sul, Dourados, 79804-970, Brazil

Received  September 2013 Revised  August 2014 Published  October 2014

This paper is concerned with well-posedness and asymptotic behavior to a class of extensible beams with nonlinear fractional damping and source terms $$ u_{tt} + \Delta^2 u - M\left(\int_{\Omega}|\nabla u|^2 \, dx \right)\Delta u + N\left(\int_{\Omega}|\nabla u|^2 \, dx \right) \left(-\Delta\right)^{\theta} u_t + f(u) = h $$ in $\Omega\times(0,\infty)$, where $\Omega\subset \mathbb{R}^q$ is a bounded domain with smooth boundary $\partial\Omega$, $0\leq \theta \le 1$, $M$ and $N$ are scalar functions, $f(u)$ is a source term and $h$ is a forcing term. When $\theta=1$ we have the classical strong damping $-\Delta u_t$, and if $\theta=0$ then weak damping $u_t$ is considered. Under the mathematical point of view the abstract setting of $\left(-\Delta\right)^{\theta}u_t$ with $0< \theta < 1$ constitutes a way to change the characteristic of the problem in wave and plate vibrations, and maybe the decay rate of solutions mainly when we consider nonconstant coefficient damping $N$. The main purpose in the present paper is to show that the transition from the case $0< \theta \leq 1$ to the case $\theta=0$ does not produce any influence on the asymptotic behavior of solutions, that is, all results are obtained by moving $\theta\in[0,1]$ uniformly. Our main result establishes the existence of finite-dimensional compact global and exponential attractors by using an approach on quasi-stable dynamical systems given by Chueshov and Lasiecka (2010).
Citation: Marcio Antonio Jorge da Silva, Vando Narciso. Attractors and their properties for a class of nonlocal extensible beams. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 985-1008. doi: 10.3934/dcds.2015.35.985
References:
[1]

A. V. Babin and M. I. Vishik, Attractors of Evolution Equations,, Studies in Mathematics and its Application 25, (1992). Google Scholar

[2]

J. M. Ball, Initial-boundary value problems for an extensible beam,, J. Math. Anal. Appl., 42 (1973), 61. doi: 10.1016/0022-247X(73)90121-2. Google Scholar

[3]

J. M. Ball, Stability theory for an extensible beam,, J. Differential Equations, 14 (1973), 399. doi: 10.1016/0022-0396(73)90056-9. Google Scholar

[4]

H. M. Berger, A new approach to the analysis of large deflections of plates,, J. Appl. Mech., 22 (1955), 465. Google Scholar

[5]

A. C. Biazutti and H. R. Crippa, Global attractor and inertial set for the beam equation,, Appl. Anal., 55 (1994), 61. doi: 10.1080/00036819408840290. Google Scholar

[6]

P. Biler, Remark on the decay for damped string and beam equations,, Nonlinear Anal., 10 (1986), 839. doi: 10.1016/0362-546X(86)90071-4. Google Scholar

[7]

F. Bucci, I. Chueshov and I. Lasiecka, Global attractor for a composite system of nonlinear wave and plate equations,, Commun. Pure Appl. Anal., 6 (2007), 113. doi: 10.3934/cpaa.2007.6.113. Google Scholar

[8]

F. Bucci and D. Toundykov, Finite-dimensional attractor for a composite system of wave/plate equations with localized damping,, Nonlinearity, 23 (2010), 2271. doi: 10.1088/0951-7715/23/9/011. Google Scholar

[9]

E. H. de Brito, The damped elastic stretched string equation generalized: Existence, uniqueness,regularity and stability,, Applicable Anal., 13 (1982), 219. doi: 10.1080/00036818208839392. Google Scholar

[10]

M. M. Cavalcanti, Existence and uniform decay for the Euler-Bernoulli viscoelastic equation with nonlocal boundary dissipation,, Discrete Contin. Dyn. Syst., 8 (2002), 675. doi: 10.3934/dcds.2002.8.675. Google Scholar

[11]

M. M. Cavalcanti, V. N. Domingos Cavalcanti and T. F. Ma, Exponential decay of the viscoelastic Euler-Bernoulli equation with a nonlocal dissipation in general domains,, Differential Integral Equations, 17 (2004), 495. Google Scholar

[12]

M. M. Cavalcanti, V. N. Domingos Cavalcanti and J. A. Soriano, Global existence and asymptotic stability for the nonlinear and generalized damped extensible plate equation,, Commun. Contemp. Math., 6 (2004), 705. doi: 10.1142/S0219199704001483. Google Scholar

[13]

R. C. Charão, E. Bisognin, V. Bisognin and A. F. Pazoto, Asymptotic behavior of a Bernoulli-Euler type equation with nonlinear localized damping,, Contributions to nonlinear analysis, 66 (2006), 67. doi: 10.1007/3-7643-7401-2_5. Google Scholar

[14]

I. Chueshov, Introduction to the Theory of Infinite-Dimensional Dissipative Systems,, Acta, (1999). Google Scholar

[15]

I. Chueshov, Global attractors for a class of Kirchhoff wave models with a structural nonlinear damping,, J. Abstr. Differ. Equ. Appl., 1 (2010), 86. Google Scholar

[16]

I. Chueshov, Long-time dynamics of Kirchhoff wave models with strong nonlinear damping,, J. Differential Equations, 252 (2012), 1229. doi: 10.1016/j.jde.2011.08.022. Google Scholar

[17]

I. Chueshov and S. Kolbasin, Plate models with state-dependent damping coefficient and their quasi-static limits,, Nonlinear Anal., 73 (2010), 1626. doi: 10.1016/j.na.2010.04.072. Google Scholar

[18]

I. Chueshov and S. Kolbasin, Long-time dynamics in plate models with strong nonlinear damping,, Commun. Pure Appl. Anal., 11 (2012), 659. doi: 10.3934/cpaa.2012.11.659. Google Scholar

[19]

I. Chueshov and I. Lasiecka, Attractors for second order evolution equations with a nonlinear damping,, J. Dynam. Differential Equations, 16 (2004), 469. doi: 10.1007/s10884-004-4289-x. Google Scholar

[20]

I. Chueshov and I. Lasiecka, Long-Time Behavior of Second Order Evolution Equations with Nonlinear Damping,, Mem. Amer. Math. Soc. 195, 195 (2008). doi: 10.1090/memo/0912. Google Scholar

[21]

I. Chueshov and I. Lasiecka, Von Karman Evolution Equations. Well-Posedness and Long-Time Dynamics,, Springer Monographs in Mathematics, (2010). doi: 10.1007/978-0-387-87712-9. Google Scholar

[22]

I. Chueshov, I. Lasiecka and D. Toundykov, Long-term dynamics of semilinear wave equation with nonlinear localized interior damping and a source term of critical exponent,, Discrete Contin. Dyn. Syst., 20 (2008), 459. doi: 10.3934/dcds.2008.20.459. Google Scholar

[23]

M. Coti Zelati, Global and exponential attractors for the singularly perturbed extensible beam,, Discrete Contin. Dyn. Syst., 25 (2009), 1041. doi: 10.3934/dcds.2009.25.1041. Google Scholar

[24]

R. W. Dickey, Free vibrations and dynamic buckling of the extensible beam,, J. Math. Anal. Appl., 29 (1970), 443. doi: 10.1016/0022-247X(70)90094-6. Google Scholar

[25]

R. W. Dickey, Dynamic stability of equilibrium states of the extensible beam,, Proc. Amer. Math. Soc., 41 (1973), 94. doi: 10.1090/S0002-9939-1973-0328290-8. Google Scholar

[26]

A. Eden and A. J. Milani, Exponential attractor for extensible beam equations,, Nonlinearity, 6 (1993), 457. doi: 10.1088/0951-7715/6/3/007. Google Scholar

[27]

A. Eden, C. Foias, B. Nicolaenko and R. Temam, Exponential Attractors for Dissipative Evolution Equations,, RAM: Research in Applied Mathematics, 37 (1994). Google Scholar

[28]

A. Eden, V. Kalantarov and A. Miranville, Finite-dimensional attractors for a general class of nonautonomous wave equations,, Appl. Math. Lett., 13 (2000), 17. doi: 10.1016/S0893-9659(00)00027-6. Google Scholar

[29]

J. G. Eisley, Nonlinear vibration of beams and rectangular plates,, Z. Angew. Math. Phys., 15 (1964), 167. doi: 10.1007/BF01602658. Google Scholar

[30]

C. Foias and E. Olson, Finite fractal dimension and Hölder-Lipschitz parametrization,, Indiana Univ. Math. J., 45 (1996), 603. doi: 10.1512/iumj.1996.45.1326. Google Scholar

[31]

M. Grobbelaar-Van Dalsen and A. van der Merwe, Boundary stabilization for the extensible beam with attached load,, Math. Models Methods Appl. Sci., 9 (1999), 379. doi: 10.1142/S0218202599000191. Google Scholar

[32]

J. K. Hale, Asymptotic Behavior of Dissipative Systems,, Mathematical Surveys and Monographs, 25 (1988). Google Scholar

[33]

J. R. Kang, Global attractor for an extensible beam equation with localized nonlinear damping and linear memory,, Math. Methods Appl. Sci., 34 (2011), 1430. doi: 10.1002/mma.1450. Google Scholar

[34]

A. Kh. Khanmamedov, Global attractors for von Karman equations with nonlinear interior dissipation,, J. Math. Anal. Appl., 318 (2006), 92. doi: 10.1016/j.jmaa.2005.05.031. Google Scholar

[35]

A. Kh. Khanmamedov, A global attractor for the plate equation with displacement-dependent damping,, Nonlinear Anal., 74 (2011), 1607. doi: 10.1016/j.na.2010.10.031. Google Scholar

[36]

G. Kirchhoff, Vorlessunger über Mathematiche Physik,, Mechanik, (1876). Google Scholar

[37]

S. Kolbasin, Attractors for Kirchhoff's equation with a nonlinear damping coefficient,, Nonlinear Anal., 71 (2009), 2361. doi: 10.1016/j.na.2009.01.187. Google Scholar

[38]

S. Kouémou Patcheu, On a global solution and asymptotic behaviour for the generalized damped extensible beam equation,, J. Differential Equations, 135 (1997), 299. doi: 10.1006/jdeq.1996.3231. Google Scholar

[39]

O. Ladyzhenskaya, Attractors for Semigroups and Evolution Equations,, Lezioni Lincee. [Lincei Lectures] Cambridge University Press, (1991). doi: 10.1017/CBO9780511569418. Google Scholar

[40]

H. Lange and G. Perla Menzala, Rates of decay of a nonlocal beam equation,, Differential Integral Equations, 10 (1997), 1075. Google Scholar

[41]

P. Lazo, Global solutions for a nonlinear wave equation,, Appl. Math. Comput., 200 (2008), 596. doi: 10.1016/j.amc.2007.11.056. Google Scholar

[42]

T. F. Ma, Boundary stabilization for a non-linear beam on elastic bearings,, Math. Methods Appl. Sci., 24 (2001), 583. doi: 10.1002/mma.230. Google Scholar

[43]

T. F. Ma and V. Narciso, Global attractor for a model of extensible beam with nonlinear damping and source terms,, Nonlinear Anal., 73 (2010), 3402. doi: 10.1016/j.na.2010.07.023. Google Scholar

[44]

T. F. Ma, V. Narciso and M. L. Pelicer, Long-time behavior of a model of extensible beams with nonlinear boundary dissipations,, J. Math. Anal. Appl., 396 (2012), 694. doi: 10.1016/j.jmaa.2012.07.004. Google Scholar

[45]

L. A. Medeiros, On a new class of nonlinear wave equations,, J. Math. Anal. Appl., 69 (1979), 252. doi: 10.1016/0022-247X(79)90192-6. Google Scholar

[46]

L. A. Medeiros and M. Milla Miranda, On a nonlinear wave equation with damping,, Rev. Mat. Univ. Complut. Madrid, 3 (1990), 213. Google Scholar

[47]

J. E. Muñoz Rivera, Global solution and regularizing properties on a class of nonlinear evolution equation,, J. Differential Equations, 128 (1996), 103. doi: 10.1006/jdeq.1996.0091. Google Scholar

[48]

A. F. Pazoto and G. Perla Menzala, Uniform Rates Of Decay of a Nonlinear Beam with Boundary Dissipation,, Report of LNCC/CNPq (Brazil) no 34/97, (1997). Google Scholar

[49]

A. F. Pazoto and G. Perla Menzala, Uniform rates of decay of a nonlinear beam model with thermal effects and nonlinear boundary dissipation,, Funkcialaj Ekvacioj, 43 (2000), 339. Google Scholar

[50]

D. Ševčovič, Existence and limiting behaviour for damped nonlinear evolution equations with nonlocal terms,, Comment. Math. Univ. Carolin., 31 (1990), 283. Google Scholar

[51]

J. Simon, Compact sets in the space $L^p(0,T;B)$,, Ann. Mat. Pura Appl.(4), 146 (1987), 65. doi: 10.1007/BF01762360. Google Scholar

[52]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics,, Applied Mathematical Sciences 68, 68 (1988). doi: 10.1007/978-1-4684-0313-8. Google Scholar

[53]

C. F. Vasconcellos and L. M. Teixeira, Existence, uniqueness and stabilization for a nonlinear plate system with nonlinear damping,, Ann. Fac. Sci. Toulouse Math. (6), 8 (1999), 173. doi: 10.5802/afst.928. Google Scholar

[54]

D. Wang and J. Zhang, Global attractor for a nonlinear plate equation with supported boundary conditions,, J. Math. Anal. Appl., 363 (2010), 468. doi: 10.1016/j.jmaa.2009.09.020. Google Scholar

[55]

S. Woinowsky-Krieger, The effect of an axial force on the vibration of hinged bars,, J. Appl. Mech., 17 (1950), 35. Google Scholar

[56]

Y. Zhijian, On an extensible beam equation with nonlinear damping and source terms,, J. Differential Equations, 254 (2013), 3903. doi: 10.1016/j.jde.2013.02.008. Google Scholar

show all references

References:
[1]

A. V. Babin and M. I. Vishik, Attractors of Evolution Equations,, Studies in Mathematics and its Application 25, (1992). Google Scholar

[2]

J. M. Ball, Initial-boundary value problems for an extensible beam,, J. Math. Anal. Appl., 42 (1973), 61. doi: 10.1016/0022-247X(73)90121-2. Google Scholar

[3]

J. M. Ball, Stability theory for an extensible beam,, J. Differential Equations, 14 (1973), 399. doi: 10.1016/0022-0396(73)90056-9. Google Scholar

[4]

H. M. Berger, A new approach to the analysis of large deflections of plates,, J. Appl. Mech., 22 (1955), 465. Google Scholar

[5]

A. C. Biazutti and H. R. Crippa, Global attractor and inertial set for the beam equation,, Appl. Anal., 55 (1994), 61. doi: 10.1080/00036819408840290. Google Scholar

[6]

P. Biler, Remark on the decay for damped string and beam equations,, Nonlinear Anal., 10 (1986), 839. doi: 10.1016/0362-546X(86)90071-4. Google Scholar

[7]

F. Bucci, I. Chueshov and I. Lasiecka, Global attractor for a composite system of nonlinear wave and plate equations,, Commun. Pure Appl. Anal., 6 (2007), 113. doi: 10.3934/cpaa.2007.6.113. Google Scholar

[8]

F. Bucci and D. Toundykov, Finite-dimensional attractor for a composite system of wave/plate equations with localized damping,, Nonlinearity, 23 (2010), 2271. doi: 10.1088/0951-7715/23/9/011. Google Scholar

[9]

E. H. de Brito, The damped elastic stretched string equation generalized: Existence, uniqueness,regularity and stability,, Applicable Anal., 13 (1982), 219. doi: 10.1080/00036818208839392. Google Scholar

[10]

M. M. Cavalcanti, Existence and uniform decay for the Euler-Bernoulli viscoelastic equation with nonlocal boundary dissipation,, Discrete Contin. Dyn. Syst., 8 (2002), 675. doi: 10.3934/dcds.2002.8.675. Google Scholar

[11]

M. M. Cavalcanti, V. N. Domingos Cavalcanti and T. F. Ma, Exponential decay of the viscoelastic Euler-Bernoulli equation with a nonlocal dissipation in general domains,, Differential Integral Equations, 17 (2004), 495. Google Scholar

[12]

M. M. Cavalcanti, V. N. Domingos Cavalcanti and J. A. Soriano, Global existence and asymptotic stability for the nonlinear and generalized damped extensible plate equation,, Commun. Contemp. Math., 6 (2004), 705. doi: 10.1142/S0219199704001483. Google Scholar

[13]

R. C. Charão, E. Bisognin, V. Bisognin and A. F. Pazoto, Asymptotic behavior of a Bernoulli-Euler type equation with nonlinear localized damping,, Contributions to nonlinear analysis, 66 (2006), 67. doi: 10.1007/3-7643-7401-2_5. Google Scholar

[14]

I. Chueshov, Introduction to the Theory of Infinite-Dimensional Dissipative Systems,, Acta, (1999). Google Scholar

[15]

I. Chueshov, Global attractors for a class of Kirchhoff wave models with a structural nonlinear damping,, J. Abstr. Differ. Equ. Appl., 1 (2010), 86. Google Scholar

[16]

I. Chueshov, Long-time dynamics of Kirchhoff wave models with strong nonlinear damping,, J. Differential Equations, 252 (2012), 1229. doi: 10.1016/j.jde.2011.08.022. Google Scholar

[17]

I. Chueshov and S. Kolbasin, Plate models with state-dependent damping coefficient and their quasi-static limits,, Nonlinear Anal., 73 (2010), 1626. doi: 10.1016/j.na.2010.04.072. Google Scholar

[18]

I. Chueshov and S. Kolbasin, Long-time dynamics in plate models with strong nonlinear damping,, Commun. Pure Appl. Anal., 11 (2012), 659. doi: 10.3934/cpaa.2012.11.659. Google Scholar

[19]

I. Chueshov and I. Lasiecka, Attractors for second order evolution equations with a nonlinear damping,, J. Dynam. Differential Equations, 16 (2004), 469. doi: 10.1007/s10884-004-4289-x. Google Scholar

[20]

I. Chueshov and I. Lasiecka, Long-Time Behavior of Second Order Evolution Equations with Nonlinear Damping,, Mem. Amer. Math. Soc. 195, 195 (2008). doi: 10.1090/memo/0912. Google Scholar

[21]

I. Chueshov and I. Lasiecka, Von Karman Evolution Equations. Well-Posedness and Long-Time Dynamics,, Springer Monographs in Mathematics, (2010). doi: 10.1007/978-0-387-87712-9. Google Scholar

[22]

I. Chueshov, I. Lasiecka and D. Toundykov, Long-term dynamics of semilinear wave equation with nonlinear localized interior damping and a source term of critical exponent,, Discrete Contin. Dyn. Syst., 20 (2008), 459. doi: 10.3934/dcds.2008.20.459. Google Scholar

[23]

M. Coti Zelati, Global and exponential attractors for the singularly perturbed extensible beam,, Discrete Contin. Dyn. Syst., 25 (2009), 1041. doi: 10.3934/dcds.2009.25.1041. Google Scholar

[24]

R. W. Dickey, Free vibrations and dynamic buckling of the extensible beam,, J. Math. Anal. Appl., 29 (1970), 443. doi: 10.1016/0022-247X(70)90094-6. Google Scholar

[25]

R. W. Dickey, Dynamic stability of equilibrium states of the extensible beam,, Proc. Amer. Math. Soc., 41 (1973), 94. doi: 10.1090/S0002-9939-1973-0328290-8. Google Scholar

[26]

A. Eden and A. J. Milani, Exponential attractor for extensible beam equations,, Nonlinearity, 6 (1993), 457. doi: 10.1088/0951-7715/6/3/007. Google Scholar

[27]

A. Eden, C. Foias, B. Nicolaenko and R. Temam, Exponential Attractors for Dissipative Evolution Equations,, RAM: Research in Applied Mathematics, 37 (1994). Google Scholar

[28]

A. Eden, V. Kalantarov and A. Miranville, Finite-dimensional attractors for a general class of nonautonomous wave equations,, Appl. Math. Lett., 13 (2000), 17. doi: 10.1016/S0893-9659(00)00027-6. Google Scholar

[29]

J. G. Eisley, Nonlinear vibration of beams and rectangular plates,, Z. Angew. Math. Phys., 15 (1964), 167. doi: 10.1007/BF01602658. Google Scholar

[30]

C. Foias and E. Olson, Finite fractal dimension and Hölder-Lipschitz parametrization,, Indiana Univ. Math. J., 45 (1996), 603. doi: 10.1512/iumj.1996.45.1326. Google Scholar

[31]

M. Grobbelaar-Van Dalsen and A. van der Merwe, Boundary stabilization for the extensible beam with attached load,, Math. Models Methods Appl. Sci., 9 (1999), 379. doi: 10.1142/S0218202599000191. Google Scholar

[32]

J. K. Hale, Asymptotic Behavior of Dissipative Systems,, Mathematical Surveys and Monographs, 25 (1988). Google Scholar

[33]

J. R. Kang, Global attractor for an extensible beam equation with localized nonlinear damping and linear memory,, Math. Methods Appl. Sci., 34 (2011), 1430. doi: 10.1002/mma.1450. Google Scholar

[34]

A. Kh. Khanmamedov, Global attractors for von Karman equations with nonlinear interior dissipation,, J. Math. Anal. Appl., 318 (2006), 92. doi: 10.1016/j.jmaa.2005.05.031. Google Scholar

[35]

A. Kh. Khanmamedov, A global attractor for the plate equation with displacement-dependent damping,, Nonlinear Anal., 74 (2011), 1607. doi: 10.1016/j.na.2010.10.031. Google Scholar

[36]

G. Kirchhoff, Vorlessunger über Mathematiche Physik,, Mechanik, (1876). Google Scholar

[37]

S. Kolbasin, Attractors for Kirchhoff's equation with a nonlinear damping coefficient,, Nonlinear Anal., 71 (2009), 2361. doi: 10.1016/j.na.2009.01.187. Google Scholar

[38]

S. Kouémou Patcheu, On a global solution and asymptotic behaviour for the generalized damped extensible beam equation,, J. Differential Equations, 135 (1997), 299. doi: 10.1006/jdeq.1996.3231. Google Scholar

[39]

O. Ladyzhenskaya, Attractors for Semigroups and Evolution Equations,, Lezioni Lincee. [Lincei Lectures] Cambridge University Press, (1991). doi: 10.1017/CBO9780511569418. Google Scholar

[40]

H. Lange and G. Perla Menzala, Rates of decay of a nonlocal beam equation,, Differential Integral Equations, 10 (1997), 1075. Google Scholar

[41]

P. Lazo, Global solutions for a nonlinear wave equation,, Appl. Math. Comput., 200 (2008), 596. doi: 10.1016/j.amc.2007.11.056. Google Scholar

[42]

T. F. Ma, Boundary stabilization for a non-linear beam on elastic bearings,, Math. Methods Appl. Sci., 24 (2001), 583. doi: 10.1002/mma.230. Google Scholar

[43]

T. F. Ma and V. Narciso, Global attractor for a model of extensible beam with nonlinear damping and source terms,, Nonlinear Anal., 73 (2010), 3402. doi: 10.1016/j.na.2010.07.023. Google Scholar

[44]

T. F. Ma, V. Narciso and M. L. Pelicer, Long-time behavior of a model of extensible beams with nonlinear boundary dissipations,, J. Math. Anal. Appl., 396 (2012), 694. doi: 10.1016/j.jmaa.2012.07.004. Google Scholar

[45]

L. A. Medeiros, On a new class of nonlinear wave equations,, J. Math. Anal. Appl., 69 (1979), 252. doi: 10.1016/0022-247X(79)90192-6. Google Scholar

[46]

L. A. Medeiros and M. Milla Miranda, On a nonlinear wave equation with damping,, Rev. Mat. Univ. Complut. Madrid, 3 (1990), 213. Google Scholar

[47]

J. E. Muñoz Rivera, Global solution and regularizing properties on a class of nonlinear evolution equation,, J. Differential Equations, 128 (1996), 103. doi: 10.1006/jdeq.1996.0091. Google Scholar

[48]

A. F. Pazoto and G. Perla Menzala, Uniform Rates Of Decay of a Nonlinear Beam with Boundary Dissipation,, Report of LNCC/CNPq (Brazil) no 34/97, (1997). Google Scholar

[49]

A. F. Pazoto and G. Perla Menzala, Uniform rates of decay of a nonlinear beam model with thermal effects and nonlinear boundary dissipation,, Funkcialaj Ekvacioj, 43 (2000), 339. Google Scholar

[50]

D. Ševčovič, Existence and limiting behaviour for damped nonlinear evolution equations with nonlocal terms,, Comment. Math. Univ. Carolin., 31 (1990), 283. Google Scholar

[51]

J. Simon, Compact sets in the space $L^p(0,T;B)$,, Ann. Mat. Pura Appl.(4), 146 (1987), 65. doi: 10.1007/BF01762360. Google Scholar

[52]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics,, Applied Mathematical Sciences 68, 68 (1988). doi: 10.1007/978-1-4684-0313-8. Google Scholar

[53]

C. F. Vasconcellos and L. M. Teixeira, Existence, uniqueness and stabilization for a nonlinear plate system with nonlinear damping,, Ann. Fac. Sci. Toulouse Math. (6), 8 (1999), 173. doi: 10.5802/afst.928. Google Scholar

[54]

D. Wang and J. Zhang, Global attractor for a nonlinear plate equation with supported boundary conditions,, J. Math. Anal. Appl., 363 (2010), 468. doi: 10.1016/j.jmaa.2009.09.020. Google Scholar

[55]

S. Woinowsky-Krieger, The effect of an axial force on the vibration of hinged bars,, J. Appl. Mech., 17 (1950), 35. Google Scholar

[56]

Y. Zhijian, On an extensible beam equation with nonlinear damping and source terms,, J. Differential Equations, 254 (2013), 3903. doi: 10.1016/j.jde.2013.02.008. Google Scholar

[1]

Marcio Antonio Jorge da Silva, Vando Narciso. Long-time dynamics for a class of extensible beams with nonlocal nonlinear damping*. Evolution Equations & Control Theory, 2017, 6 (3) : 437-470. doi: 10.3934/eect.2017023

[2]

George Avalos, Pelin G. Geredeli, Justin T. Webster. Finite dimensional smooth attractor for the Berger plate with dissipation acting on a portion of the boundary. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2301-2328. doi: 10.3934/cpaa.2016038

[3]

Igor Chueshov, Stanislav Kolbasin. Long-time dynamics in plate models with strong nonlinear damping. Communications on Pure & Applied Analysis, 2012, 11 (2) : 659-674. doi: 10.3934/cpaa.2012.11.659

[4]

Michele Coti Zelati. Global and exponential attractors for the singularly perturbed extensible beam. Discrete & Continuous Dynamical Systems - A, 2009, 25 (3) : 1041-1060. doi: 10.3934/dcds.2009.25.1041

[5]

Chunxiang Zhao, Chunyan Zhao, Chengkui Zhong. The global attractor for a class of extensible beams with nonlocal weak damping. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 0-0. doi: 10.3934/dcdsb.2019197

[6]

I. D. Chueshov, Iryna Ryzhkova. A global attractor for a fluid--plate interaction model. Communications on Pure & Applied Analysis, 2013, 12 (4) : 1635-1656. doi: 10.3934/cpaa.2013.12.1635

[7]

Francesca Bucci, Igor Chueshov. Long-time dynamics of a coupled system of nonlinear wave and thermoelastic plate equations. Discrete & Continuous Dynamical Systems - A, 2008, 22 (3) : 557-586. doi: 10.3934/dcds.2008.22.557

[8]

Francesca Bucci, Igor Chueshov, Irena Lasiecka. Global attractor for a composite system of nonlinear wave and plate equations. Communications on Pure & Applied Analysis, 2007, 6 (1) : 113-140. doi: 10.3934/cpaa.2007.6.113

[9]

Azer Khanmamedov, Sema Simsek. Existence of the global attractor for the plate equation with nonlocal nonlinearity in $ \mathbb{R} ^{n}$. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 151-172. doi: 10.3934/dcdsb.2016.21.151

[10]

Moncef Aouadi, Alain Miranville. Quasi-stability and global attractor in nonlinear thermoelastic diffusion plate with memory. Evolution Equations & Control Theory, 2015, 4 (3) : 241-263. doi: 10.3934/eect.2015.4.241

[11]

Igor Chueshov, Irena Lasiecka, Justin Webster. Flow-plate interactions: Well-posedness and long-time behavior. Discrete & Continuous Dynamical Systems - S, 2014, 7 (5) : 925-965. doi: 10.3934/dcdss.2014.7.925

[12]

Pelin G. Geredeli, Azer Khanmamedov. Long-time dynamics of the parabolic $p$-Laplacian equation. Communications on Pure & Applied Analysis, 2013, 12 (2) : 735-754. doi: 10.3934/cpaa.2013.12.735

[13]

Tristan Roget. On the long-time behaviour of age and trait structured population dynamics. Discrete & Continuous Dynamical Systems - B, 2019, 24 (6) : 2551-2576. doi: 10.3934/dcdsb.2018265

[14]

Dalibor Pražák. Exponential attractor for the delayed logistic equation with a nonlinear diffusion. Conference Publications, 2003, 2003 (Special) : 717-726. doi: 10.3934/proc.2003.2003.717

[15]

Messoud Efendiev, Anna Zhigun. On an exponential attractor for a class of PDEs with degenerate diffusion and chemotaxis. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 651-673. doi: 10.3934/dcds.2018028

[16]

Andrea Giorgini. On the Swift-Hohenberg equation with slow and fast dynamics: well-posedness and long-time behavior. Communications on Pure & Applied Analysis, 2016, 15 (1) : 219-241. doi: 10.3934/cpaa.2016.15.219

[17]

Irena Lasiecka, To Fu Ma, Rodrigo Nunes Monteiro. Long-time dynamics of vectorial von Karman system with nonlinear thermal effects and free boundary conditions. Discrete & Continuous Dynamical Systems - B, 2018, 23 (3) : 1037-1072. doi: 10.3934/dcdsb.2018141

[18]

Xinguang Yang, Baowei Feng, Thales Maier de Souza, Taige Wang. Long-time dynamics for a non-autonomous Navier-Stokes-Voigt equation in Lipschitz domains. Discrete & Continuous Dynamical Systems - B, 2019, 24 (1) : 363-386. doi: 10.3934/dcdsb.2018084

[19]

Mykhailo Potomkin. Asymptotic behavior of thermoviscoelastic Berger plate. Communications on Pure & Applied Analysis, 2010, 9 (1) : 161-192. doi: 10.3934/cpaa.2010.9.161

[20]

Elena Bonetti, Elisabetta Rocca. Global existence and long-time behaviour for a singular integro-differential phase-field system. Communications on Pure & Applied Analysis, 2007, 6 (2) : 367-387. doi: 10.3934/cpaa.2007.6.367

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (14)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]