January  2016, 36(1): 1-41. doi: 10.3934/dcds.2016.36.1

Statistical properties of diffeomorphisms with weak invariant manifolds

1. 

Centro de Matemática da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal, Portugal

Received  August 2014 Revised  March 2015 Published  June 2015

We consider diffeomorphisms of compact Riemmanian manifolds which have a Gibbs-Markov-Young structure, consisting of a reference set $\Lambda$ with a hyperbolic product structure and a countable Markov partition. We assume polynomial contraction on stable leaves, polynomial backward contraction on unstable leaves, a bounded distortion property and a certain regularity of the stable foliation. We establish a control on the decay of correlations and large deviations of the physical measure of the dynamical system, based on a polynomial control on the Lebesgue measure of the tail of return times. Finally, we present an example of a dynamical system defined on the torus and prove that it verifies the properties of the Gibbs-Markov-Young structure that we considered.
Citation: José F. Alves, Davide Azevedo. Statistical properties of diffeomorphisms with weak invariant manifolds. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 1-41. doi: 10.3934/dcds.2016.36.1
References:
[1]

J. F. Alves and V. Pinheiro, Slow rates of mixing for dynamical systems with hyperbolic structures,, J. Stat. Phys., 131 (2008), 505. doi: 10.1007/s10955-008-9482-6. Google Scholar

[2]

J. F. Alves and V. Pinheiro, Gibbs-Markov structures and limit laws for partially hyperbolic attractors with mostly expanding central direction,, Adv. Math., 223 (2010), 1706. doi: 10.1016/j.aim.2009.10.010. Google Scholar

[3]

V. Araújo, Large deviations for semiflows over a non-uniformly expanding base,, Bull. Braz. Math. Soc. (N.S.), 38 (2007), 335. doi: 10.1007/s00574-007-0049-y. Google Scholar

[4]

V. Araújo and M. J. Pacifico, Large deviations for non-uniformly expanding maps,, J. Stat. Phys., 125 (2006), 415. doi: 10.1007/s10955-006-9183-y. Google Scholar

[5]

R. Bowen, Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms,, Lecture Notes in Mathematics, (1975). Google Scholar

[6]

M. Benedicks and L.-S. Young, Markov extensions and decay of correlations for certain Hénon maps,, Astérisque, 261 (2000), 13. Google Scholar

[7]

Y. Kifer, Large deviations in dynamical systems and stochastic processes,, Trans. Amer. Math. Soc., 321 (1990), 505. doi: 10.1090/S0002-9947-1990-1025756-7. Google Scholar

[8]

A. Lopes, Entropy and large deviations,, Nonlinearity, 3 (1990), 527. doi: 10.1088/0951-7715/3/2/013. Google Scholar

[9]

R. Mañé, Ergodic Theory and Differentiable Dynamics,, Springer-Verlag, (1987). doi: 10.1007/978-3-642-70335-5. Google Scholar

[10]

I. Melbourne, Large and moderate deviations for slowly mixing dynamical systems,, Proc. Amer. Math. Soc., 137 (2009), 1735. doi: 10.1090/S0002-9939-08-09751-7. Google Scholar

[11]

I. Melbourne and M. Nicol, Almost sure invariance principle for nonuniformly hyperbolic systems,, Commun. Math. Phys., 260 (2005), 131. doi: 10.1007/s00220-005-1407-5. Google Scholar

[12]

I. Melbourne and M. Nicol, Large deviations for nonuniformly hyperbolic systems,, Trans. Amer. Math. Soc., 360 (2000), 6661. doi: 10.1090/S0002-9947-08-04520-0. Google Scholar

[13]

S. Orei and S. Pelikan, Large deviations principles for stationary processes,, Ann. Probab., 16 (1988), 1481. doi: 10.1214/aop/1176991579. Google Scholar

[14]

D. Ruelle, A measure associated with Axiom A attractors,, Am. J. Math., 98 (1976), 619. doi: 10.2307/2373810. Google Scholar

[15]

E. Rio, Théorie Asymptotique des Processus Aléatoires Faiblement Dépendants,, Mathématiques & Applications(Berlin) [Mathematics and Applications] 31, 31 (2000). Google Scholar

[16]

Ya. Sinai, Gibbs measure in ergodic theory,, Russ. Math. Surv., 27 (1972), 21. Google Scholar

[17]

S. Waddington, Large deviations asymptotics for Anosov flows,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 13 (1996), 445. Google Scholar

[18]

L.-S. Young, Large deviations in dynamical systems,, Trans. Amer. Math. Soc., 318 (1990), 525. doi: 10.2307/2001318. Google Scholar

[19]

L.-S. Young, Statistical properties of dynamical systems with some hyperbolicity,, Ann. Math., 147 (1998), 585. doi: 10.2307/120960. Google Scholar

[20]

L.-S. Young, Recurrence times and rates of mixing,, Israel J. Math., 110 (1999), 153. doi: 10.1007/BF02808180. Google Scholar

show all references

References:
[1]

J. F. Alves and V. Pinheiro, Slow rates of mixing for dynamical systems with hyperbolic structures,, J. Stat. Phys., 131 (2008), 505. doi: 10.1007/s10955-008-9482-6. Google Scholar

[2]

J. F. Alves and V. Pinheiro, Gibbs-Markov structures and limit laws for partially hyperbolic attractors with mostly expanding central direction,, Adv. Math., 223 (2010), 1706. doi: 10.1016/j.aim.2009.10.010. Google Scholar

[3]

V. Araújo, Large deviations for semiflows over a non-uniformly expanding base,, Bull. Braz. Math. Soc. (N.S.), 38 (2007), 335. doi: 10.1007/s00574-007-0049-y. Google Scholar

[4]

V. Araújo and M. J. Pacifico, Large deviations for non-uniformly expanding maps,, J. Stat. Phys., 125 (2006), 415. doi: 10.1007/s10955-006-9183-y. Google Scholar

[5]

R. Bowen, Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms,, Lecture Notes in Mathematics, (1975). Google Scholar

[6]

M. Benedicks and L.-S. Young, Markov extensions and decay of correlations for certain Hénon maps,, Astérisque, 261 (2000), 13. Google Scholar

[7]

Y. Kifer, Large deviations in dynamical systems and stochastic processes,, Trans. Amer. Math. Soc., 321 (1990), 505. doi: 10.1090/S0002-9947-1990-1025756-7. Google Scholar

[8]

A. Lopes, Entropy and large deviations,, Nonlinearity, 3 (1990), 527. doi: 10.1088/0951-7715/3/2/013. Google Scholar

[9]

R. Mañé, Ergodic Theory and Differentiable Dynamics,, Springer-Verlag, (1987). doi: 10.1007/978-3-642-70335-5. Google Scholar

[10]

I. Melbourne, Large and moderate deviations for slowly mixing dynamical systems,, Proc. Amer. Math. Soc., 137 (2009), 1735. doi: 10.1090/S0002-9939-08-09751-7. Google Scholar

[11]

I. Melbourne and M. Nicol, Almost sure invariance principle for nonuniformly hyperbolic systems,, Commun. Math. Phys., 260 (2005), 131. doi: 10.1007/s00220-005-1407-5. Google Scholar

[12]

I. Melbourne and M. Nicol, Large deviations for nonuniformly hyperbolic systems,, Trans. Amer. Math. Soc., 360 (2000), 6661. doi: 10.1090/S0002-9947-08-04520-0. Google Scholar

[13]

S. Orei and S. Pelikan, Large deviations principles for stationary processes,, Ann. Probab., 16 (1988), 1481. doi: 10.1214/aop/1176991579. Google Scholar

[14]

D. Ruelle, A measure associated with Axiom A attractors,, Am. J. Math., 98 (1976), 619. doi: 10.2307/2373810. Google Scholar

[15]

E. Rio, Théorie Asymptotique des Processus Aléatoires Faiblement Dépendants,, Mathématiques & Applications(Berlin) [Mathematics and Applications] 31, 31 (2000). Google Scholar

[16]

Ya. Sinai, Gibbs measure in ergodic theory,, Russ. Math. Surv., 27 (1972), 21. Google Scholar

[17]

S. Waddington, Large deviations asymptotics for Anosov flows,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 13 (1996), 445. Google Scholar

[18]

L.-S. Young, Large deviations in dynamical systems,, Trans. Amer. Math. Soc., 318 (1990), 525. doi: 10.2307/2001318. Google Scholar

[19]

L.-S. Young, Statistical properties of dynamical systems with some hyperbolicity,, Ann. Math., 147 (1998), 585. doi: 10.2307/120960. Google Scholar

[20]

L.-S. Young, Recurrence times and rates of mixing,, Israel J. Math., 110 (1999), 153. doi: 10.1007/BF02808180. Google Scholar

[1]

Miguel Abadi, Sandro Vaienti. Large deviations for short recurrence. Discrete & Continuous Dynamical Systems - A, 2008, 21 (3) : 729-747. doi: 10.3934/dcds.2008.21.729

[2]

Renaud Leplaideur, Benoît Saussol. Large deviations for return times in non-rectangle sets for axiom a diffeomorphisms. Discrete & Continuous Dynamical Systems - A, 2008, 22 (1&2) : 327-344. doi: 10.3934/dcds.2008.22.327

[3]

Dongmei Zheng, Ercai Chen, Jiahong Yang. On large deviations for amenable group actions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 7191-7206. doi: 10.3934/dcds.2016113

[4]

Salah-Eldin A. Mohammed, Tusheng Zhang. Large deviations for stochastic systems with memory. Discrete & Continuous Dynamical Systems - B, 2006, 6 (4) : 881-893. doi: 10.3934/dcdsb.2006.6.881

[5]

Michiko Yuri. Polynomial decay of correlations for intermittent sofic systems. Discrete & Continuous Dynamical Systems - A, 2008, 22 (1&2) : 445-464. doi: 10.3934/dcds.2008.22.445

[6]

Vincent Lynch. Decay of correlations for non-Hölder observables. Discrete & Continuous Dynamical Systems - A, 2006, 16 (1) : 19-46. doi: 10.3934/dcds.2006.16.19

[7]

Ioannis Konstantoulas. Effective decay of multiple correlations in semidirect product actions. Journal of Modern Dynamics, 2016, 10: 81-111. doi: 10.3934/jmd.2016.10.81

[8]

Vincent Penné, Benoît Saussol, Sandro Vaienti. Dimensions for recurrence times: topological and dynamical properties. Discrete & Continuous Dynamical Systems - A, 1999, 5 (4) : 783-798. doi: 10.3934/dcds.1999.5.783

[9]

Thomas Bogenschütz, Achim Doebler. Large deviations in expanding random dynamical systems. Discrete & Continuous Dynamical Systems - A, 1999, 5 (4) : 805-812. doi: 10.3934/dcds.1999.5.805

[10]

Stefano Galatolo, Pietro Peterlongo. Long hitting time, slow decay of correlations and arithmetical properties. Discrete & Continuous Dynamical Systems - A, 2010, 27 (1) : 185-204. doi: 10.3934/dcds.2010.27.185

[11]

Thomas Ward, Yuki Yayama. Markov partitions reflecting the geometry of $\times2$, $\times3$. Discrete & Continuous Dynamical Systems - A, 2009, 24 (2) : 613-624. doi: 10.3934/dcds.2009.24.613

[12]

Jean René Chazottes, E. Ugalde. Entropy estimation and fluctuations of hitting and recurrence times for Gibbsian sources. Discrete & Continuous Dynamical Systems - B, 2005, 5 (3) : 565-586. doi: 10.3934/dcdsb.2005.5.565

[13]

Eugen Mihailescu. Approximations for Gibbs states of arbitrary Hölder potentials on hyperbolic folded sets. Discrete & Continuous Dynamical Systems - A, 2012, 32 (3) : 961-975. doi: 10.3934/dcds.2012.32.961

[14]

Pengfei Zhang. Partially hyperbolic sets with positive measure and $ACIP$ for partially hyperbolic systems. Discrete & Continuous Dynamical Systems - A, 2012, 32 (4) : 1435-1447. doi: 10.3934/dcds.2012.32.1435

[15]

Rafael Potrie. Partially hyperbolic diffeomorphisms with a trapping property. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 5037-5054. doi: 10.3934/dcds.2015.35.5037

[16]

Lorenzo J. Díaz, Todd Fisher. Symbolic extensions and partially hyperbolic diffeomorphisms. Discrete & Continuous Dynamical Systems - A, 2011, 29 (4) : 1419-1441. doi: 10.3934/dcds.2011.29.1419

[17]

Zhenqi Jenny Wang. Local rigidity of partially hyperbolic actions. Journal of Modern Dynamics, 2010, 4 (2) : 271-327. doi: 10.3934/jmd.2010.4.271

[18]

Zhenqi Jenny Wang. Local rigidity of partially hyperbolic actions. Electronic Research Announcements, 2010, 17: 68-79. doi: 10.3934/era.2010.17.68

[19]

Artur O. Lopes, Rafael O. Ruggiero. Large deviations and Aubry-Mather measures supported in nonhyperbolic closed geodesics. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 1155-1174. doi: 10.3934/dcds.2011.29.1155

[20]

Federico Bassetti, Lucia Ladelli. Large deviations for the solution of a Kac-type kinetic equation. Kinetic & Related Models, 2013, 6 (2) : 245-268. doi: 10.3934/krm.2013.6.245

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (18)
  • HTML views (1)
  • Cited by (3)

Other articles
by authors

[Back to Top]