\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Existence and stability of a two-parameter family of solitary waves for a 2-coupled nonlinear Schrödinger system

Abstract Related Papers Cited by
  • In this paper, the existence and stability results for a two-parameter family of vector solitary-wave solutions (i.e both components are nonzero) of the nonlinear Schrödinger system \begin{equation*} \left\{ \begin{matrix} iu_t+ u_{xx} + (a |u|^2 + b |v|^2) u=0,\\ iv_t+ v_{xx} + (b |u|^2 + c |v|^2) v=0,\\ \end{matrix} \right. \end{equation*} where $u,v$ are complex-valued functions of $(x,t)\in \mathbb R^2$, and $a,b,c \in \mathbb R$ are established. The results extend our earlier ones as well as those of Ohta, Cipolatti and Zumpichiatti and de Figueiredo and Lopes. As opposed to other methods used before to establish existence and stability where the two constraints of the minimization problems are related to each other, our approach here characterizes solitary-wave solutions as minimizers of an energy functional subject to two independent constraints. The set of minimizers is shown to be stable; and depending on the interplay between the parameters $a,b$ and $c$, further information about the structures of this set are given.
    Mathematics Subject Classification: Primary: 35A15, 35B35, 35Q35.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    J. Albert and S. Bhattarai, Existence and stability of a two-parameter family of solitary waves for an NLS-KdV system, Adv. Differential Equations, 18 (2013), 1129-1164.

    [2]

    A. Ambrosetti and E. Colorado, Bound and ground states of coupled nonlinear Schrödinger equations, C. R. Math. Acad. Sci. Paris, 342 (2006), 453-458.doi: 10.1016/j.crma.2006.01.024.

    [3]

    ________, Standing waves of some coupled nonlinear Schrödinger equations, J. London Math. Soc., 75 (2007), 67-82.

    [4]

    T. Bartsch, N. Dancer and Z.-Q. Wang, A Liouville theorem, a-priori bounds, and bifurcating branches of positive solutions for a nonlinear elliptic system, Cal. of Var. and PDEs, 37 (2010), 345-361.doi: 10.1007/s00526-009-0265-y.

    [5]

    T. Bartsch and Z.-Q. Wang, Note on ground states of nonlinear Schrödinger systems, Journ. Part. Diff. Eqns., 19 (2006), 200-207.

    [6]

    T. Bartsch, Z.-Q. Wang and J. Wei, Bound states for a coupled Schrödinger system, J. Fixed Point Theory Appl., 2 (2007), 353-367.doi: 10.1007/s11784-007-0033-6.

    [7]

    D. J. Benney and A. C. Newell, The propagation of nonlinear wave envelopes, Jour. Math. Phys., 46 (1967), 133-139.

    [8]

    J. Byeon, Effect of symmetry to the structure of positive solutions in nonlinear elliptic problems, Jour. Diff. Eqns., 163 (2000), 429-474.doi: 10.1006/jdeq.1999.3737.

    [9]

    T. Cazenave, An Introduction to Nonlinear Schrödinger Equations, Textos de Métodos Matemáticos, Vol. 22, Instituto de Matemática-UFRJ, Rio de Janeiro, 1989.

    [10]

    _________, Semilinear Schrödinger equations, AMS-Courant Lecture Notes, 10, 2003.

    [11]

    R. Cipolatti and W. Zumpichiatti, Orbitally stable standing waves for a system of coupled nonlinear Schrödinger equations, Nonlinear Anal., 42 (2000), 445-461.doi: 10.1016/S0362-546X(98)00357-5.

    [12]

    E. N. Dancer, J. Wei and T. Weth, A priori bounds versus multiple existence of positive solutions for a nonlinear Schrödinger system, Ann. Inst. H. Poincare Anal. Non Linearaire, 27 (2010), 953-969.doi: 10.1016/j.anihpc.2010.01.009.

    [13]

    D. G. de Figueiredo and O. Lopes, Solitary waves for some nonlinear Schrödinger systems, Ann. Inst. H. Poincaré Anal. Non Linéaire, 25 (2008), 149-161.doi: 10.1016/j.anihpc.2006.11.006.

    [14]

    D. Garrisi, On the orbital stability of standing-waves solutions to a coupled non-linear Klein-Gordon equation, Adv. Nonlinear Stud., 12 (2012), 639-658, arXiv:1009.2281v2.

    [15]

    A. Hasegawa and F. Tappert, Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers I. Anomalous dispersion, Appl. Phys. Lett., 23 (1973), p142.doi: 10.1063/1.1654836.

    [16]

    ________, Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers II. Normal dispersion, Appl. Phys. Lett., 23 (1973), p171.

    [17]

    I. Ianni and S. Le Coz, Multi-speed solitary wave solutions for nonlinear Schrödinger systems, J. London Math. Soc. (2), 89 (2014), 623-639.doi: 10.1112/jlms/jdt083.

    [18]

    E. H. Lieb and M. Loss, Analysis, Second edition, Graduate studies in mathematics, vol. 14, American Mathematical Society, Providence, 2001.doi: 10.1090/gsm/014.

    [19]

    T.-C. Lin and J. Wei, Ground state of $N$ coupled nonlinear Schrödinger equations in $R^n$, $n\leq 3$, Comm. Math. Phys., 255 (2005), 629-653.doi: 10.1007/s00220-005-1313-x.

    [20]

    P.-L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. I, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 109-145.

    [21]

    _________, The concentration-compactness principle in the calculus of variations. The locally compact case. II, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 223-283.

    [22]

    Z. Liu and Z.-Q. Wang, Multiple bound states of nonlinear Schrödinger systems, Comm. Math. Phys., 282 (2008), 721-731.doi: 10.1007/s00220-008-0546-x.

    [23]

    N. V. Nguyen and Z.-Q. Wang, Orbital stability of solitary waves for a nonlinear Schrödinger system, Adv. Diff. Eqns., 16 (2011), 977-1000.

    [24]

    N. V. Nguyen and Z.-Q. Wang, Orbital stability of solitary waves of a $3-$coupled nonlinear Schrödinger system, Non. Anal. A: Theory, Methods & Appl., 90 (2013), 1-26.doi: 10.1016/j.na.2013.05.027.

    [25]

    M. Ohta, Stability of solitary waves for coupled nonlinear Schrödinger equations, Nonlinear Anal.: Theory, Methods & Appl., 26 (1996), 933-939.doi: 10.1016/0362-546X(94)00340-8.

    [26]

    G. J. Roskes, Some nonlinear multiphase interactions, Stud. Appl. Math., 55 (1976), p231.

    [27]

    B. Sirakov, Least energy solitary waves for a system of nonlinear Schrödinger equations in $\mathbf {R^n}$, Comm. Math. Phys., 271 (2007), 199-221.doi: 10.1007/s00220-006-0179-x.

    [28]

    X. Song, Stability and instability of standing waves to a system of Schrödinger equations with combined power-type nonlinearities, Jour. Math. Anal. Appl., 366 (2010), 345-359.doi: 10.1016/j.jmaa.2009.12.011.

    [29]

    J. Yang, Multiple permanent-wave trains in nonlinear systems, Stud. Appl. Math., 100 (1998), 127-152.doi: 10.1111/1467-9590.00073.

    [30]

    V. E. Zakharov, Stability of periodic waves of finite amplitude on the surface of a deep fluid, Sov. Phys. Jour. Appl. Mech. Tech. Phys., 9 (1968), 190-194.doi: 10.1007/BF00913182.

    [31]

    V. E. Zakharov, Collapse of Langmuir waves, Sov. Phys. JETP, 35 (1972), 908-914.

    [32]

    A. K. Zvezdin and A. F. Popkov, Contribution to the nonlinear theory of magnetostatic spin waves, Sov. Phys. JETP, 2 (1983), p350.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(139) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return