Citation: |
[1] |
J. Albert and S. Bhattarai, Existence and stability of a two-parameter family of solitary waves for an NLS-KdV system, Adv. Differential Equations, 18 (2013), 1129-1164. |
[2] |
A. Ambrosetti and E. Colorado, Bound and ground states of coupled nonlinear Schrödinger equations, C. R. Math. Acad. Sci. Paris, 342 (2006), 453-458.doi: 10.1016/j.crma.2006.01.024. |
[3] |
________, Standing waves of some coupled nonlinear Schrödinger equations, J. London Math. Soc., 75 (2007), 67-82. |
[4] |
T. Bartsch, N. Dancer and Z.-Q. Wang, A Liouville theorem, a-priori bounds, and bifurcating branches of positive solutions for a nonlinear elliptic system, Cal. of Var. and PDEs, 37 (2010), 345-361.doi: 10.1007/s00526-009-0265-y. |
[5] |
T. Bartsch and Z.-Q. Wang, Note on ground states of nonlinear Schrödinger systems, Journ. Part. Diff. Eqns., 19 (2006), 200-207. |
[6] |
T. Bartsch, Z.-Q. Wang and J. Wei, Bound states for a coupled Schrödinger system, J. Fixed Point Theory Appl., 2 (2007), 353-367.doi: 10.1007/s11784-007-0033-6. |
[7] |
D. J. Benney and A. C. Newell, The propagation of nonlinear wave envelopes, Jour. Math. Phys., 46 (1967), 133-139. |
[8] |
J. Byeon, Effect of symmetry to the structure of positive solutions in nonlinear elliptic problems, Jour. Diff. Eqns., 163 (2000), 429-474.doi: 10.1006/jdeq.1999.3737. |
[9] |
T. Cazenave, An Introduction to Nonlinear Schrödinger Equations, Textos de Métodos Matemáticos, Vol. 22, Instituto de Matemática-UFRJ, Rio de Janeiro, 1989. |
[10] |
_________, Semilinear Schrödinger equations, AMS-Courant Lecture Notes, 10, 2003. |
[11] |
R. Cipolatti and W. Zumpichiatti, Orbitally stable standing waves for a system of coupled nonlinear Schrödinger equations, Nonlinear Anal., 42 (2000), 445-461.doi: 10.1016/S0362-546X(98)00357-5. |
[12] |
E. N. Dancer, J. Wei and T. Weth, A priori bounds versus multiple existence of positive solutions for a nonlinear Schrödinger system, Ann. Inst. H. Poincare Anal. Non Linearaire, 27 (2010), 953-969.doi: 10.1016/j.anihpc.2010.01.009. |
[13] |
D. G. de Figueiredo and O. Lopes, Solitary waves for some nonlinear Schrödinger systems, Ann. Inst. H. Poincaré Anal. Non Linéaire, 25 (2008), 149-161.doi: 10.1016/j.anihpc.2006.11.006. |
[14] |
D. Garrisi, On the orbital stability of standing-waves solutions to a coupled non-linear Klein-Gordon equation, Adv. Nonlinear Stud., 12 (2012), 639-658, arXiv:1009.2281v2. |
[15] |
A. Hasegawa and F. Tappert, Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers I. Anomalous dispersion, Appl. Phys. Lett., 23 (1973), p142.doi: 10.1063/1.1654836. |
[16] |
________, Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers II. Normal dispersion, Appl. Phys. Lett., 23 (1973), p171. |
[17] |
I. Ianni and S. Le Coz, Multi-speed solitary wave solutions for nonlinear Schrödinger systems, J. London Math. Soc. (2), 89 (2014), 623-639.doi: 10.1112/jlms/jdt083. |
[18] |
E. H. Lieb and M. Loss, Analysis, Second edition, Graduate studies in mathematics, vol. 14, American Mathematical Society, Providence, 2001.doi: 10.1090/gsm/014. |
[19] |
T.-C. Lin and J. Wei, Ground state of $N$ coupled nonlinear Schrödinger equations in $R^n$, $n\leq 3$, Comm. Math. Phys., 255 (2005), 629-653.doi: 10.1007/s00220-005-1313-x. |
[20] |
P.-L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. I, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 109-145. |
[21] |
_________, The concentration-compactness principle in the calculus of variations. The locally compact case. II, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 223-283. |
[22] |
Z. Liu and Z.-Q. Wang, Multiple bound states of nonlinear Schrödinger systems, Comm. Math. Phys., 282 (2008), 721-731.doi: 10.1007/s00220-008-0546-x. |
[23] |
N. V. Nguyen and Z.-Q. Wang, Orbital stability of solitary waves for a nonlinear Schrödinger system, Adv. Diff. Eqns., 16 (2011), 977-1000. |
[24] |
N. V. Nguyen and Z.-Q. Wang, Orbital stability of solitary waves of a $3-$coupled nonlinear Schrödinger system, Non. Anal. A: Theory, Methods & Appl., 90 (2013), 1-26.doi: 10.1016/j.na.2013.05.027. |
[25] |
M. Ohta, Stability of solitary waves for coupled nonlinear Schrödinger equations, Nonlinear Anal.: Theory, Methods & Appl., 26 (1996), 933-939.doi: 10.1016/0362-546X(94)00340-8. |
[26] |
G. J. Roskes, Some nonlinear multiphase interactions, Stud. Appl. Math., 55 (1976), p231. |
[27] |
B. Sirakov, Least energy solitary waves for a system of nonlinear Schrödinger equations in $\mathbf {R^n}$, Comm. Math. Phys., 271 (2007), 199-221.doi: 10.1007/s00220-006-0179-x. |
[28] |
X. Song, Stability and instability of standing waves to a system of Schrödinger equations with combined power-type nonlinearities, Jour. Math. Anal. Appl., 366 (2010), 345-359.doi: 10.1016/j.jmaa.2009.12.011. |
[29] |
J. Yang, Multiple permanent-wave trains in nonlinear systems, Stud. Appl. Math., 100 (1998), 127-152.doi: 10.1111/1467-9590.00073. |
[30] |
V. E. Zakharov, Stability of periodic waves of finite amplitude on the surface of a deep fluid, Sov. Phys. Jour. Appl. Mech. Tech. Phys., 9 (1968), 190-194.doi: 10.1007/BF00913182. |
[31] |
V. E. Zakharov, Collapse of Langmuir waves, Sov. Phys. JETP, 35 (1972), 908-914. |
[32] |
A. K. Zvezdin and A. F. Popkov, Contribution to the nonlinear theory of magnetostatic spin waves, Sov. Phys. JETP, 2 (1983), p350. |