• Previous Article
    Boundary behavior and asymptotic behavior of solutions to a class of parabolic equations with boundary degeneracy
  • DCDS Home
  • This Issue
  • Next Article
    Existence and stability of a two-parameter family of solitary waves for a 2-coupled nonlinear Schrödinger system
February  2016, 36(2): 1023-1039. doi: 10.3934/dcds.2016.36.1023

$C^\infty$ Local solutions of elliptical $2-$Hessian equation in $\mathbb{R}^3$

1. 

Wuhan Institute of Physics and Mathematics,Chinese Academy of Sciences, Wuhan 430071

2. 

School of Mathematics and Statistics, Wuhan University, Wuhan, 430072, China

3. 

School of Mathematics, Wuhan University, 430072, Wuhan

Received  June 2014 Revised  March 2015 Published  August 2015

In this work, we study the existence of $C^{\infty}$ local solutions to $2$-Hessian equation in $\mathbb{R}^{3}$. We consider the case that the right hand side function $f$ possibly vanishes, changes the sign, is positively or negatively defined. We also give the convexities of solutions which are related with the annulation or the sign of right-hand side function $f$. The associated linearized operator are uniformly elliptic.
Citation: Guji Tian, Qi Wang, Chao-Jiang Xu. $C^\infty$ Local solutions of elliptical $2-$Hessian equation in $\mathbb{R}^3$. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 1023-1039. doi: 10.3934/dcds.2016.36.1023
References:
[1]

L. Caffarelli, L. Nirenberg and J. Spruck, Dirichlet problem for nonlinear second order elliptic equations I,Monge-Ampère equations,, Comm. Pure Appl. Math., 37 (1984), 369.  doi: 10.1002/cpa.3160370306.  Google Scholar

[2]

B. Guan and J. Spruck, Locally convex hypersurfaces of constant curvature with boundary,, Comm. Pure Appl. Math., 57 (2004), 1311.  doi: 10.1002/cpa.20010.  Google Scholar

[3]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order,, Springer, (1983).  doi: 10.1007/978-3-642-61798-0.  Google Scholar

[4]

Q. Han, Local solutions to a class of Monge-Ampère equations of mixed type,, Duke Math. J., 136 (2007), 421.   Google Scholar

[5]

J. Hong and C. Zuily, Exitence of $C^{\infty}$ local solutions for the Monge-Ampère equation,, Invent.Math., 89 (1987), 645.  doi: 10.1007/BF01388988.  Google Scholar

[6]

N. M. Ivochkina, A description of the stability cones generated by differential operators of Monge-Ampère type, English transl.,, Math. USSR Sbornik, 50 (1985), 259.   Google Scholar

[7]

N. M. Ivochkina, S. I. Prokofeva and G. V. Yakunina, The Gårding cones in the modern theory of fully nonlinear second order differential equations,, Journal of Mathematical Sciences, 184 (2012), 295.  doi: 10.1007/s10958-012-0869-1.  Google Scholar

[8]

C. S. Lin, The local isometric embedding in $\mathbbR^3$ of 2-dimensional Riemannian manifolds with non negative curvature,, Journal of Diff. Equations, 21 (1985), 213.   Google Scholar

[9]

C. S. Lin, The local isometric embedding in $\mathbbR^{3}$ of two dimensinal Riemannian manifolds with Gaussian curvature changing sign clearly,, Comm. Pure Appl. Math., 39 (1986), 867.  doi: 10.1002/cpa.3160390607.  Google Scholar

[10]

Q. Wang and C.-J. Xu, $C^{1,1}$ solution of the Dirichlet problem for degenerate k-Hessian equations,, Nonlinear Analysis, 104 (2014), 133.  doi: 10.1016/j.na.2014.03.016.  Google Scholar

[11]

X.-N. Ma and L. Xu, The convexity of solution of a class Hessian equation in bounded convex domain in $\mathbbR^3$,, Journal of Funct. Anal., 255 (2008), 1713.  doi: 10.1016/j.jfa.2008.06.008.  Google Scholar

[12]

X.-J. Wang, The $k$-Hessian equation,, Geometric Analysis and PDEs, 1977 (2009), 177.  doi: 10.1007/978-3-642-01674-5_5.  Google Scholar

show all references

References:
[1]

L. Caffarelli, L. Nirenberg and J. Spruck, Dirichlet problem for nonlinear second order elliptic equations I,Monge-Ampère equations,, Comm. Pure Appl. Math., 37 (1984), 369.  doi: 10.1002/cpa.3160370306.  Google Scholar

[2]

B. Guan and J. Spruck, Locally convex hypersurfaces of constant curvature with boundary,, Comm. Pure Appl. Math., 57 (2004), 1311.  doi: 10.1002/cpa.20010.  Google Scholar

[3]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order,, Springer, (1983).  doi: 10.1007/978-3-642-61798-0.  Google Scholar

[4]

Q. Han, Local solutions to a class of Monge-Ampère equations of mixed type,, Duke Math. J., 136 (2007), 421.   Google Scholar

[5]

J. Hong and C. Zuily, Exitence of $C^{\infty}$ local solutions for the Monge-Ampère equation,, Invent.Math., 89 (1987), 645.  doi: 10.1007/BF01388988.  Google Scholar

[6]

N. M. Ivochkina, A description of the stability cones generated by differential operators of Monge-Ampère type, English transl.,, Math. USSR Sbornik, 50 (1985), 259.   Google Scholar

[7]

N. M. Ivochkina, S. I. Prokofeva and G. V. Yakunina, The Gårding cones in the modern theory of fully nonlinear second order differential equations,, Journal of Mathematical Sciences, 184 (2012), 295.  doi: 10.1007/s10958-012-0869-1.  Google Scholar

[8]

C. S. Lin, The local isometric embedding in $\mathbbR^3$ of 2-dimensional Riemannian manifolds with non negative curvature,, Journal of Diff. Equations, 21 (1985), 213.   Google Scholar

[9]

C. S. Lin, The local isometric embedding in $\mathbbR^{3}$ of two dimensinal Riemannian manifolds with Gaussian curvature changing sign clearly,, Comm. Pure Appl. Math., 39 (1986), 867.  doi: 10.1002/cpa.3160390607.  Google Scholar

[10]

Q. Wang and C.-J. Xu, $C^{1,1}$ solution of the Dirichlet problem for degenerate k-Hessian equations,, Nonlinear Analysis, 104 (2014), 133.  doi: 10.1016/j.na.2014.03.016.  Google Scholar

[11]

X.-N. Ma and L. Xu, The convexity of solution of a class Hessian equation in bounded convex domain in $\mathbbR^3$,, Journal of Funct. Anal., 255 (2008), 1713.  doi: 10.1016/j.jfa.2008.06.008.  Google Scholar

[12]

X.-J. Wang, The $k$-Hessian equation,, Geometric Analysis and PDEs, 1977 (2009), 177.  doi: 10.1007/978-3-642-01674-5_5.  Google Scholar

[1]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[2]

Tong Yang, Seiji Ukai, Huijiang Zhao. Stationary solutions to the exterior problems for the Boltzmann equation, I. Existence. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 495-520. doi: 10.3934/dcds.2009.23.495

[3]

Ryuji Kajikiya. Existence of nodal solutions for the sublinear Moore-Nehari differential equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1483-1506. doi: 10.3934/dcds.2020326

[4]

Jun Zhou. Lifespan of solutions to a fourth order parabolic PDE involving the Hessian modeling epitaxial growth. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5581-5590. doi: 10.3934/cpaa.2020252

[5]

Yukihiko Nakata. Existence of a period two solution of a delay differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1103-1110. doi: 10.3934/dcdss.2020392

[6]

Pierre Baras. A generalization of a criterion for the existence of solutions to semilinear elliptic equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 465-504. doi: 10.3934/dcdss.2020439

[7]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[8]

Helmut Abels, Johannes Kampmann. Existence of weak solutions for a sharp interface model for phase separation on biological membranes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 331-351. doi: 10.3934/dcdss.2020325

[9]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[10]

Rim Bourguiba, Rosana Rodríguez-López. Existence results for fractional differential equations in presence of upper and lower solutions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1723-1747. doi: 10.3934/dcdsb.2020180

[11]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[12]

Manuel Friedrich, Martin Kružík, Jan Valdman. Numerical approximation of von Kármán viscoelastic plates. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 299-319. doi: 10.3934/dcdss.2020322

[13]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[14]

Zheng Han, Daoyuan Fang. Almost global existence for the Klein-Gordon equation with the Kirchhoff-type nonlinearity. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020287

[15]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[16]

Dorothee Knees, Chiara Zanini. Existence of parameterized BV-solutions for rate-independent systems with discontinuous loads. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 121-149. doi: 10.3934/dcdss.2020332

[17]

Daniele Bartolucci, Changfeng Gui, Yeyao Hu, Aleks Jevnikar, Wen Yang. Mean field equations on tori: Existence and uniqueness of evenly symmetric blow-up solutions. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3093-3116. doi: 10.3934/dcds.2020039

[18]

Xing Wu, Keqin Su. Global existence and optimal decay rate of solutions to hyperbolic chemotaxis system in Besov spaces. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021002

[19]

Vandana Sharma. Global existence and uniform estimates of solutions to reaction diffusion systems with mass transport type boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021001

[20]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (66)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]