-
Previous Article
Boundary behavior and asymptotic behavior of solutions to a class of parabolic equations with boundary degeneracy
- DCDS Home
- This Issue
-
Next Article
Existence and stability of a two-parameter family of solitary waves for a 2-coupled nonlinear Schrödinger system
$C^\infty$ Local solutions of elliptical $2-$Hessian equation in $\mathbb{R}^3$
1. | Wuhan Institute of Physics and Mathematics,Chinese Academy of Sciences, Wuhan 430071 |
2. | School of Mathematics and Statistics, Wuhan University, Wuhan, 430072, China |
3. | School of Mathematics, Wuhan University, 430072, Wuhan |
References:
[1] |
L. Caffarelli, L. Nirenberg and J. Spruck, Dirichlet problem for nonlinear second order elliptic equations I,Monge-Ampère equations,, Comm. Pure Appl. Math., 37 (1984), 369.
doi: 10.1002/cpa.3160370306. |
[2] |
B. Guan and J. Spruck, Locally convex hypersurfaces of constant curvature with boundary,, Comm. Pure Appl. Math., 57 (2004), 1311.
doi: 10.1002/cpa.20010. |
[3] |
D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order,, Springer, (1983).
doi: 10.1007/978-3-642-61798-0. |
[4] |
Q. Han, Local solutions to a class of Monge-Ampère equations of mixed type,, Duke Math. J., 136 (2007), 421.
|
[5] |
J. Hong and C. Zuily, Exitence of $C^{\infty}$ local solutions for the Monge-Ampère equation,, Invent.Math., 89 (1987), 645.
doi: 10.1007/BF01388988. |
[6] |
N. M. Ivochkina, A description of the stability cones generated by differential operators of Monge-Ampère type, English transl.,, Math. USSR Sbornik, 50 (1985), 259. Google Scholar |
[7] |
N. M. Ivochkina, S. I. Prokofeva and G. V. Yakunina, The Gårding cones in the modern theory of fully nonlinear second order differential equations,, Journal of Mathematical Sciences, 184 (2012), 295.
doi: 10.1007/s10958-012-0869-1. |
[8] |
C. S. Lin, The local isometric embedding in $\mathbbR^3$ of 2-dimensional Riemannian manifolds with non negative curvature,, Journal of Diff. Equations, 21 (1985), 213.
|
[9] |
C. S. Lin, The local isometric embedding in $\mathbbR^{3}$ of two dimensinal Riemannian manifolds with Gaussian curvature changing sign clearly,, Comm. Pure Appl. Math., 39 (1986), 867.
doi: 10.1002/cpa.3160390607. |
[10] |
Q. Wang and C.-J. Xu, $C^{1,1}$ solution of the Dirichlet problem for degenerate k-Hessian equations,, Nonlinear Analysis, 104 (2014), 133.
doi: 10.1016/j.na.2014.03.016. |
[11] |
X.-N. Ma and L. Xu, The convexity of solution of a class Hessian equation in bounded convex domain in $\mathbbR^3$,, Journal of Funct. Anal., 255 (2008), 1713.
doi: 10.1016/j.jfa.2008.06.008. |
[12] |
X.-J. Wang, The $k$-Hessian equation,, Geometric Analysis and PDEs, 1977 (2009), 177.
doi: 10.1007/978-3-642-01674-5_5. |
show all references
References:
[1] |
L. Caffarelli, L. Nirenberg and J. Spruck, Dirichlet problem for nonlinear second order elliptic equations I,Monge-Ampère equations,, Comm. Pure Appl. Math., 37 (1984), 369.
doi: 10.1002/cpa.3160370306. |
[2] |
B. Guan and J. Spruck, Locally convex hypersurfaces of constant curvature with boundary,, Comm. Pure Appl. Math., 57 (2004), 1311.
doi: 10.1002/cpa.20010. |
[3] |
D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order,, Springer, (1983).
doi: 10.1007/978-3-642-61798-0. |
[4] |
Q. Han, Local solutions to a class of Monge-Ampère equations of mixed type,, Duke Math. J., 136 (2007), 421.
|
[5] |
J. Hong and C. Zuily, Exitence of $C^{\infty}$ local solutions for the Monge-Ampère equation,, Invent.Math., 89 (1987), 645.
doi: 10.1007/BF01388988. |
[6] |
N. M. Ivochkina, A description of the stability cones generated by differential operators of Monge-Ampère type, English transl.,, Math. USSR Sbornik, 50 (1985), 259. Google Scholar |
[7] |
N. M. Ivochkina, S. I. Prokofeva and G. V. Yakunina, The Gårding cones in the modern theory of fully nonlinear second order differential equations,, Journal of Mathematical Sciences, 184 (2012), 295.
doi: 10.1007/s10958-012-0869-1. |
[8] |
C. S. Lin, The local isometric embedding in $\mathbbR^3$ of 2-dimensional Riemannian manifolds with non negative curvature,, Journal of Diff. Equations, 21 (1985), 213.
|
[9] |
C. S. Lin, The local isometric embedding in $\mathbbR^{3}$ of two dimensinal Riemannian manifolds with Gaussian curvature changing sign clearly,, Comm. Pure Appl. Math., 39 (1986), 867.
doi: 10.1002/cpa.3160390607. |
[10] |
Q. Wang and C.-J. Xu, $C^{1,1}$ solution of the Dirichlet problem for degenerate k-Hessian equations,, Nonlinear Analysis, 104 (2014), 133.
doi: 10.1016/j.na.2014.03.016. |
[11] |
X.-N. Ma and L. Xu, The convexity of solution of a class Hessian equation in bounded convex domain in $\mathbbR^3$,, Journal of Funct. Anal., 255 (2008), 1713.
doi: 10.1016/j.jfa.2008.06.008. |
[12] |
X.-J. Wang, The $k$-Hessian equation,, Geometric Analysis and PDEs, 1977 (2009), 177.
doi: 10.1007/978-3-642-01674-5_5. |
[1] |
Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020448 |
[2] |
Tong Yang, Seiji Ukai, Huijiang Zhao. Stationary solutions to the exterior problems for the Boltzmann equation, I. Existence. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 495-520. doi: 10.3934/dcds.2009.23.495 |
[3] |
Ryuji Kajikiya. Existence of nodal solutions for the sublinear Moore-Nehari differential equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1483-1506. doi: 10.3934/dcds.2020326 |
[4] |
Jun Zhou. Lifespan of solutions to a fourth order parabolic PDE involving the Hessian modeling epitaxial growth. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5581-5590. doi: 10.3934/cpaa.2020252 |
[5] |
Yukihiko Nakata. Existence of a period two solution of a delay differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1103-1110. doi: 10.3934/dcdss.2020392 |
[6] |
Pierre Baras. A generalization of a criterion for the existence of solutions to semilinear elliptic equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 465-504. doi: 10.3934/dcdss.2020439 |
[7] |
Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020319 |
[8] |
Helmut Abels, Johannes Kampmann. Existence of weak solutions for a sharp interface model for phase separation on biological membranes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 331-351. doi: 10.3934/dcdss.2020325 |
[9] |
Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020320 |
[10] |
Rim Bourguiba, Rosana Rodríguez-López. Existence results for fractional differential equations in presence of upper and lower solutions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1723-1747. doi: 10.3934/dcdsb.2020180 |
[11] |
Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136 |
[12] |
Manuel Friedrich, Martin Kružík, Jan Valdman. Numerical approximation of von Kármán viscoelastic plates. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 299-319. doi: 10.3934/dcdss.2020322 |
[13] |
Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243 |
[14] |
Zheng Han, Daoyuan Fang. Almost global existence for the Klein-Gordon equation with the Kirchhoff-type nonlinearity. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020287 |
[15] |
Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020436 |
[16] |
Dorothee Knees, Chiara Zanini. Existence of parameterized BV-solutions for rate-independent systems with discontinuous loads. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 121-149. doi: 10.3934/dcdss.2020332 |
[17] |
Daniele Bartolucci, Changfeng Gui, Yeyao Hu, Aleks Jevnikar, Wen Yang. Mean field equations on tori: Existence and uniqueness of evenly symmetric blow-up solutions. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3093-3116. doi: 10.3934/dcds.2020039 |
[18] |
Xing Wu, Keqin Su. Global existence and optimal decay rate of solutions to hyperbolic chemotaxis system in Besov spaces. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021002 |
[19] |
Vandana Sharma. Global existence and uniform estimates of solutions to reaction diffusion systems with mass transport type boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021001 |
[20] |
Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]