February  2016, 36(2): 1041-1060. doi: 10.3934/dcds.2016.36.1041

Boundary behavior and asymptotic behavior of solutions to a class of parabolic equations with boundary degeneracy

1. 

School of Mathematics, Jilin University, Changchun 130012

Received  June 2014 Revised  January 2015 Published  August 2015

This paper concerns the boundary behavior and the asymptotic behavior of solutions to a class of boundary-initial parabolic problems with boundary degeneracy. At the degenerate boundary, it is shown that the diffusion vanishes and the solution possesses the invariability if the degeneracy is sufficiently strong. As to the asymptotic behavior, it is proved that the decay rate is an exponential function if the degeneracy is weak enough, while a power function if it is not.
Citation: Chunpeng Wang. Boundary behavior and asymptotic behavior of solutions to a class of parabolic equations with boundary degeneracy. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 1041-1060. doi: 10.3934/dcds.2016.36.1041
References:
[1]

F. Alabau-Boussouira, P. Cannarsa and G. Fragnelli, Carleman estimates for degenerate parabolic operators with applications to null controllability,, Journal of Evolution Equations, 6 (2006), 161.  doi: 10.1007/s00028-006-0222-6.  Google Scholar

[2]

F. Black and M. Scholes, The pricing of options and corporate liabilities,, Journal of Political Economy, 81 (1973), 637.  doi: 10.1086/260062.  Google Scholar

[3]

P. Cannarsa, G. Fragnelli and J. Vancostenoble, Linear degenerate parabolic equations in bounded domains: Controllability and observability,, in Systems, 202 (2006), 163.  doi: 10.1007/0-387-33882-9_15.  Google Scholar

[4]

P. Cannarsa, G. Fragnelli and J. Vancostenoble, Regional controllability of semilinear degenerate parabolic equations in bounded domains,, Journal of Mathematical Analysis and Applications, 320 (2006), 804.  doi: 10.1016/j.jmaa.2005.07.006.  Google Scholar

[5]

P. Cannarsa, P. Martinez and J. Vancostenoble, Persistent regional null controllability for a class of degenerate parabolic equations,, Communications on Pure and Applied Analysis, 3 (2004), 607.  doi: 10.3934/cpaa.2004.3.607.  Google Scholar

[6]

P. Cannarsa, P. Martinez and J. Vancostenoble, Null controllability of degenerate heat equations,, Advances in Differential Equations, 10 (2005), 153.   Google Scholar

[7]

P. Cannarsa, P. Martinez and J. Vancostenoble, Carleman estimates for a class of degenerate parabolic operators,, SIAM Journal on Control and Optimization, 47 (2008), 1.  doi: 10.1137/04062062X.  Google Scholar

[8]

L. C. Evans, Partial Differential Equations,, $1^{st}$ edition, (1998).   Google Scholar

[9]

P. Martinez, J. P. Raymond and J. Vancostenoble, Regional null controllability of a linearized Crocco-type equation,, SIAM Journal on Control and Optimization, 42 (2003), 709.  doi: 10.1137/S0363012902403547.  Google Scholar

[10]

P. Martinez, J. Vancostenoble, Carleman estimates for one-dimensional degenerate heat equations,, Journal of Evolution Equations, 6 (2006), 325.  doi: 10.1007/s00028-006-0214-6.  Google Scholar

[11]

G. R. North, L. Howard, D. Pollard and B. Wielicki, Variational formulation of Budyko-Sellers climate models,, Journal of the Atmospheric Sciences, 36 (1979), 255.  doi: 10.1175/1520-0469(1979)036<0255:VFOBSC>2.0.CO;2.  Google Scholar

[12]

O. A. Ole\uinik and E. V. Radkevič, Second Order Equations with Nonnegative Characteristic Form,, American Mathematical Society, (1973).   Google Scholar

[13]

C. Wang, Approximate controllability of a class of degenerate systems,, Applied Mathematics and Computation, 203 (2008), 447.  doi: 10.1016/j.amc.2008.04.056.  Google Scholar

[14]

C. Wang, Approximate controllability of a class of semilinear systems with boundary degeneracy,, Journal of Evolution Equations, 10 (2010), 163.  doi: 10.1007/s00028-009-0044-4.  Google Scholar

[15]

J. Yin and C. Wang, Evolutionary weighted $p$-Laplacian with boundary degeneracy,, Journal of Differential Equations, 237 (2007), 421.  doi: 10.1016/j.jde.2007.03.012.  Google Scholar

show all references

References:
[1]

F. Alabau-Boussouira, P. Cannarsa and G. Fragnelli, Carleman estimates for degenerate parabolic operators with applications to null controllability,, Journal of Evolution Equations, 6 (2006), 161.  doi: 10.1007/s00028-006-0222-6.  Google Scholar

[2]

F. Black and M. Scholes, The pricing of options and corporate liabilities,, Journal of Political Economy, 81 (1973), 637.  doi: 10.1086/260062.  Google Scholar

[3]

P. Cannarsa, G. Fragnelli and J. Vancostenoble, Linear degenerate parabolic equations in bounded domains: Controllability and observability,, in Systems, 202 (2006), 163.  doi: 10.1007/0-387-33882-9_15.  Google Scholar

[4]

P. Cannarsa, G. Fragnelli and J. Vancostenoble, Regional controllability of semilinear degenerate parabolic equations in bounded domains,, Journal of Mathematical Analysis and Applications, 320 (2006), 804.  doi: 10.1016/j.jmaa.2005.07.006.  Google Scholar

[5]

P. Cannarsa, P. Martinez and J. Vancostenoble, Persistent regional null controllability for a class of degenerate parabolic equations,, Communications on Pure and Applied Analysis, 3 (2004), 607.  doi: 10.3934/cpaa.2004.3.607.  Google Scholar

[6]

P. Cannarsa, P. Martinez and J. Vancostenoble, Null controllability of degenerate heat equations,, Advances in Differential Equations, 10 (2005), 153.   Google Scholar

[7]

P. Cannarsa, P. Martinez and J. Vancostenoble, Carleman estimates for a class of degenerate parabolic operators,, SIAM Journal on Control and Optimization, 47 (2008), 1.  doi: 10.1137/04062062X.  Google Scholar

[8]

L. C. Evans, Partial Differential Equations,, $1^{st}$ edition, (1998).   Google Scholar

[9]

P. Martinez, J. P. Raymond and J. Vancostenoble, Regional null controllability of a linearized Crocco-type equation,, SIAM Journal on Control and Optimization, 42 (2003), 709.  doi: 10.1137/S0363012902403547.  Google Scholar

[10]

P. Martinez, J. Vancostenoble, Carleman estimates for one-dimensional degenerate heat equations,, Journal of Evolution Equations, 6 (2006), 325.  doi: 10.1007/s00028-006-0214-6.  Google Scholar

[11]

G. R. North, L. Howard, D. Pollard and B. Wielicki, Variational formulation of Budyko-Sellers climate models,, Journal of the Atmospheric Sciences, 36 (1979), 255.  doi: 10.1175/1520-0469(1979)036<0255:VFOBSC>2.0.CO;2.  Google Scholar

[12]

O. A. Ole\uinik and E. V. Radkevič, Second Order Equations with Nonnegative Characteristic Form,, American Mathematical Society, (1973).   Google Scholar

[13]

C. Wang, Approximate controllability of a class of degenerate systems,, Applied Mathematics and Computation, 203 (2008), 447.  doi: 10.1016/j.amc.2008.04.056.  Google Scholar

[14]

C. Wang, Approximate controllability of a class of semilinear systems with boundary degeneracy,, Journal of Evolution Equations, 10 (2010), 163.  doi: 10.1007/s00028-009-0044-4.  Google Scholar

[15]

J. Yin and C. Wang, Evolutionary weighted $p$-Laplacian with boundary degeneracy,, Journal of Differential Equations, 237 (2007), 421.  doi: 10.1016/j.jde.2007.03.012.  Google Scholar

[1]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[2]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[3]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[4]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[5]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[6]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[7]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[8]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020267

[9]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[10]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020052

[11]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[12]

Vivina Barutello, Gian Marco Canneori, Susanna Terracini. Minimal collision arcs asymptotic to central configurations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 61-86. doi: 10.3934/dcds.2020218

[13]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[14]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (37)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]