February  2016, 36(2): 1041-1060. doi: 10.3934/dcds.2016.36.1041

Boundary behavior and asymptotic behavior of solutions to a class of parabolic equations with boundary degeneracy

1. 

School of Mathematics, Jilin University, Changchun 130012

Received  June 2014 Revised  January 2015 Published  August 2015

This paper concerns the boundary behavior and the asymptotic behavior of solutions to a class of boundary-initial parabolic problems with boundary degeneracy. At the degenerate boundary, it is shown that the diffusion vanishes and the solution possesses the invariability if the degeneracy is sufficiently strong. As to the asymptotic behavior, it is proved that the decay rate is an exponential function if the degeneracy is weak enough, while a power function if it is not.
Citation: Chunpeng Wang. Boundary behavior and asymptotic behavior of solutions to a class of parabolic equations with boundary degeneracy. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 1041-1060. doi: 10.3934/dcds.2016.36.1041
References:
[1]

F. Alabau-Boussouira, P. Cannarsa and G. Fragnelli, Carleman estimates for degenerate parabolic operators with applications to null controllability,, Journal of Evolution Equations, 6 (2006), 161.  doi: 10.1007/s00028-006-0222-6.  Google Scholar

[2]

F. Black and M. Scholes, The pricing of options and corporate liabilities,, Journal of Political Economy, 81 (1973), 637.  doi: 10.1086/260062.  Google Scholar

[3]

P. Cannarsa, G. Fragnelli and J. Vancostenoble, Linear degenerate parabolic equations in bounded domains: Controllability and observability,, in Systems, 202 (2006), 163.  doi: 10.1007/0-387-33882-9_15.  Google Scholar

[4]

P. Cannarsa, G. Fragnelli and J. Vancostenoble, Regional controllability of semilinear degenerate parabolic equations in bounded domains,, Journal of Mathematical Analysis and Applications, 320 (2006), 804.  doi: 10.1016/j.jmaa.2005.07.006.  Google Scholar

[5]

P. Cannarsa, P. Martinez and J. Vancostenoble, Persistent regional null controllability for a class of degenerate parabolic equations,, Communications on Pure and Applied Analysis, 3 (2004), 607.  doi: 10.3934/cpaa.2004.3.607.  Google Scholar

[6]

P. Cannarsa, P. Martinez and J. Vancostenoble, Null controllability of degenerate heat equations,, Advances in Differential Equations, 10 (2005), 153.   Google Scholar

[7]

P. Cannarsa, P. Martinez and J. Vancostenoble, Carleman estimates for a class of degenerate parabolic operators,, SIAM Journal on Control and Optimization, 47 (2008), 1.  doi: 10.1137/04062062X.  Google Scholar

[8]

L. C. Evans, Partial Differential Equations,, $1^{st}$ edition, (1998).   Google Scholar

[9]

P. Martinez, J. P. Raymond and J. Vancostenoble, Regional null controllability of a linearized Crocco-type equation,, SIAM Journal on Control and Optimization, 42 (2003), 709.  doi: 10.1137/S0363012902403547.  Google Scholar

[10]

P. Martinez, J. Vancostenoble, Carleman estimates for one-dimensional degenerate heat equations,, Journal of Evolution Equations, 6 (2006), 325.  doi: 10.1007/s00028-006-0214-6.  Google Scholar

[11]

G. R. North, L. Howard, D. Pollard and B. Wielicki, Variational formulation of Budyko-Sellers climate models,, Journal of the Atmospheric Sciences, 36 (1979), 255.  doi: 10.1175/1520-0469(1979)036<0255:VFOBSC>2.0.CO;2.  Google Scholar

[12]

O. A. Ole\uinik and E. V. Radkevič, Second Order Equations with Nonnegative Characteristic Form,, American Mathematical Society, (1973).   Google Scholar

[13]

C. Wang, Approximate controllability of a class of degenerate systems,, Applied Mathematics and Computation, 203 (2008), 447.  doi: 10.1016/j.amc.2008.04.056.  Google Scholar

[14]

C. Wang, Approximate controllability of a class of semilinear systems with boundary degeneracy,, Journal of Evolution Equations, 10 (2010), 163.  doi: 10.1007/s00028-009-0044-4.  Google Scholar

[15]

J. Yin and C. Wang, Evolutionary weighted $p$-Laplacian with boundary degeneracy,, Journal of Differential Equations, 237 (2007), 421.  doi: 10.1016/j.jde.2007.03.012.  Google Scholar

show all references

References:
[1]

F. Alabau-Boussouira, P. Cannarsa and G. Fragnelli, Carleman estimates for degenerate parabolic operators with applications to null controllability,, Journal of Evolution Equations, 6 (2006), 161.  doi: 10.1007/s00028-006-0222-6.  Google Scholar

[2]

F. Black and M. Scholes, The pricing of options and corporate liabilities,, Journal of Political Economy, 81 (1973), 637.  doi: 10.1086/260062.  Google Scholar

[3]

P. Cannarsa, G. Fragnelli and J. Vancostenoble, Linear degenerate parabolic equations in bounded domains: Controllability and observability,, in Systems, 202 (2006), 163.  doi: 10.1007/0-387-33882-9_15.  Google Scholar

[4]

P. Cannarsa, G. Fragnelli and J. Vancostenoble, Regional controllability of semilinear degenerate parabolic equations in bounded domains,, Journal of Mathematical Analysis and Applications, 320 (2006), 804.  doi: 10.1016/j.jmaa.2005.07.006.  Google Scholar

[5]

P. Cannarsa, P. Martinez and J. Vancostenoble, Persistent regional null controllability for a class of degenerate parabolic equations,, Communications on Pure and Applied Analysis, 3 (2004), 607.  doi: 10.3934/cpaa.2004.3.607.  Google Scholar

[6]

P. Cannarsa, P. Martinez and J. Vancostenoble, Null controllability of degenerate heat equations,, Advances in Differential Equations, 10 (2005), 153.   Google Scholar

[7]

P. Cannarsa, P. Martinez and J. Vancostenoble, Carleman estimates for a class of degenerate parabolic operators,, SIAM Journal on Control and Optimization, 47 (2008), 1.  doi: 10.1137/04062062X.  Google Scholar

[8]

L. C. Evans, Partial Differential Equations,, $1^{st}$ edition, (1998).   Google Scholar

[9]

P. Martinez, J. P. Raymond and J. Vancostenoble, Regional null controllability of a linearized Crocco-type equation,, SIAM Journal on Control and Optimization, 42 (2003), 709.  doi: 10.1137/S0363012902403547.  Google Scholar

[10]

P. Martinez, J. Vancostenoble, Carleman estimates for one-dimensional degenerate heat equations,, Journal of Evolution Equations, 6 (2006), 325.  doi: 10.1007/s00028-006-0214-6.  Google Scholar

[11]

G. R. North, L. Howard, D. Pollard and B. Wielicki, Variational formulation of Budyko-Sellers climate models,, Journal of the Atmospheric Sciences, 36 (1979), 255.  doi: 10.1175/1520-0469(1979)036<0255:VFOBSC>2.0.CO;2.  Google Scholar

[12]

O. A. Ole\uinik and E. V. Radkevič, Second Order Equations with Nonnegative Characteristic Form,, American Mathematical Society, (1973).   Google Scholar

[13]

C. Wang, Approximate controllability of a class of degenerate systems,, Applied Mathematics and Computation, 203 (2008), 447.  doi: 10.1016/j.amc.2008.04.056.  Google Scholar

[14]

C. Wang, Approximate controllability of a class of semilinear systems with boundary degeneracy,, Journal of Evolution Equations, 10 (2010), 163.  doi: 10.1007/s00028-009-0044-4.  Google Scholar

[15]

J. Yin and C. Wang, Evolutionary weighted $p$-Laplacian with boundary degeneracy,, Journal of Differential Equations, 237 (2007), 421.  doi: 10.1016/j.jde.2007.03.012.  Google Scholar

[1]

Ciprian G. Gal, M. Grasselli. On the asymptotic behavior of the Caginalp system with dynamic boundary conditions. Communications on Pure & Applied Analysis, 2009, 8 (2) : 689-710. doi: 10.3934/cpaa.2009.8.689

[2]

Jian Yang. Asymptotic behavior of solutions for competitive models with a free boundary. Discrete & Continuous Dynamical Systems - A, 2015, 35 (7) : 3253-3276. doi: 10.3934/dcds.2015.35.3253

[3]

Hongwei Zhang, Qingying Hu. Asymptotic behavior and nonexistence of wave equation with nonlinear boundary condition. Communications on Pure & Applied Analysis, 2005, 4 (4) : 861-869. doi: 10.3934/cpaa.2005.4.861

[4]

Zhenhua Zhang. Asymptotic behavior of solutions to the phase-field equations with neumann boundary conditions. Communications on Pure & Applied Analysis, 2005, 4 (3) : 683-693. doi: 10.3934/cpaa.2005.4.683

[5]

Guanggan Chen, Jian Zhang. Asymptotic behavior for a stochastic wave equation with dynamical boundary conditions. Discrete & Continuous Dynamical Systems - B, 2012, 17 (5) : 1441-1453. doi: 10.3934/dcdsb.2012.17.1441

[6]

Bhargav Kumar Kakumani, Suman Kumar Tumuluri. Asymptotic behavior of the solution of a diffusion equation with nonlocal boundary conditions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 407-419. doi: 10.3934/dcdsb.2017019

[7]

Haoyue Cui, Dongyi Liu, Genqi Xu. Asymptotic behavior of a Schrödinger equation under a constrained boundary feedback. Mathematical Control & Related Fields, 2018, 8 (2) : 383-395. doi: 10.3934/mcrf.2018015

[8]

Fujun Zhou, Junde Wu, Shangbin Cui. Existence and asymptotic behavior of solutions to a moving boundary problem modeling the growth of multi-layer tumors. Communications on Pure & Applied Analysis, 2009, 8 (5) : 1669-1688. doi: 10.3934/cpaa.2009.8.1669

[9]

Monica Conti, Stefania Gatti, Alain Miranville. Asymptotic behavior of the Caginalp phase-field system with coupled dynamic boundary conditions. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 485-505. doi: 10.3934/dcdss.2012.5.485

[10]

Junde Wu, Shangbin Cui. Asymptotic behavior of solutions of a free boundary problem modelling the growth of tumors with Stokes equations. Discrete & Continuous Dynamical Systems - A, 2009, 24 (2) : 625-651. doi: 10.3934/dcds.2009.24.625

[11]

Junde Wu, Shangbin Cui. Asymptotic behavior of solutions for parabolic differential equations with invariance and applications to a free boundary problem modeling tumor growth. Discrete & Continuous Dynamical Systems - A, 2010, 26 (2) : 737-765. doi: 10.3934/dcds.2010.26.737

[12]

Haiyang He. Asymptotic behavior of the ground state Solutions for Hénon equation with Robin boundary condition. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2393-2408. doi: 10.3934/cpaa.2013.12.2393

[13]

Ciprian G. Gal, Hao Wu. Asymptotic behavior of a Cahn-Hilliard equation with Wentzell boundary conditions and mass conservation. Discrete & Continuous Dynamical Systems - A, 2008, 22 (4) : 1041-1063. doi: 10.3934/dcds.2008.22.1041

[14]

Yuan Wu, Jin Liang, Bei Hu. A free boundary problem for defaultable corporate bond with credit rating migration risk and its asymptotic behavior. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 0-0. doi: 10.3934/dcdsb.2019207

[15]

Ivonne Rivas, Muhammad Usman, Bing-Yu Zhang. Global well-posedness and asymptotic behavior of a class of initial-boundary-value problem of the Korteweg-De Vries equation on a finite domain. Mathematical Control & Related Fields, 2011, 1 (1) : 61-81. doi: 10.3934/mcrf.2011.1.61

[16]

Zhipeng Qiu, Jun Yu, Yun Zou. The asymptotic behavior of a chemostat model. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 721-727. doi: 10.3934/dcdsb.2004.4.721

[17]

Christos Sourdis. Analysis of an irregular boundary layer behavior for the steady state flow of a Boussinesq fluid. Discrete & Continuous Dynamical Systems - A, 2017, 37 (2) : 1039-1059. doi: 10.3934/dcds.2017043

[18]

Grey Ballard, John Baxley, Nisrine Libbus. Qualitative behavior and computation of multiple solutions of nonlinear boundary value problems. Communications on Pure & Applied Analysis, 2006, 5 (2) : 251-259. doi: 10.3934/cpaa.2006.5.251

[19]

Jong-Shenq Guo. Blow-up behavior for a quasilinear parabolic equation with nonlinear boundary condition. Discrete & Continuous Dynamical Systems - A, 2007, 18 (1) : 71-84. doi: 10.3934/dcds.2007.18.71

[20]

Cong He, Hongjun Yu. Large time behavior of the solution to the Landau Equation with specular reflective boundary condition. Kinetic & Related Models, 2013, 6 (3) : 601-623. doi: 10.3934/krm.2013.6.601

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (12)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]