-
Previous Article
Symmetry and non-existence of solutions for a nonlinear system involving the fractional Laplacian
- DCDS Home
- This Issue
-
Next Article
On the global existence of classical solutions for compressible Navier-Stokes equations with vacuum
Exact controllability for first order quasilinear hyperbolic systems with internal controls
1. | School of Mathematical Sciences, Fudan University, Shanghai 200433, China, China |
References:
[1] |
T. Li, Controllability and Observabilty for Quasilinear Hyperbolic Systems, AIMS Series on Applied Mathematics, 3, (2010), American Institute of Mathematical Sciences & Higher Education Press, Springfield, Beijing. |
[2] |
T. Li and Y. Jin, Semi-global $C^1$ solution to the mixed initial-boundary value problem for quasilinear hyperbolic systems, Chin. Ann. Math., 22 (2001), 325-336.
doi: 10.1142/S0252959901000334. |
[3] |
T. Li and B. Rao, Local exact boundary controllability for a class of quasilinear hyperbolic systems, Chin. Ann. Math., 23 (2002), 209-218.
doi: 10.1142/S0252959902000201. |
[4] |
T. Li and B. Rao, Exact boundary controllability for quasilinear hyperbolic systems, SIAM J. Control Optim., 41 (2003), 1748-1755. |
[5] |
T. Li and B. Rao, Strong(Weak) exact controllability and Strong(Weak) exact observability for quasilinear hyperbolic systems[J], Chin. Ann. Math., 31 (2010), 723-742.
doi: 10.1007/s11401-010-0600-9. |
[6] |
T. Li and W. Yu, Boundary Value Problems for Quasilinear Hyperbolic Systems, Duke University Mathematics Series V, Duke University Press, Durham, 1985. |
[7] |
J.-L. Lions, Exact controllability, stabilization and pertubations for distributed systems, SIAM Rev., 30 (1988), 1-68.
doi: 10.1137/1030001. |
[8] |
D. L. Russell, Controllability and stabilizability theory for linear partial differential equations: Recent progress and open questions, SIAM Rev., 20 (1978), 639-739.
doi: 10.1137/1020095. |
[9] |
L. Yu, Semi-global $C^1$ solution to the mixed initial-boundary value problem for a kind of quasilinear hyperbolic systems (in Chinese), Chin. Ann. Math., 25 (2004), 549-560. |
[10] |
K. Zhuang, Exact controllability with internal controls for first order quasilinear hyperbolic systems with zero eigenvalues,, to appear in Chin. Ann. Math., ().
|
show all references
References:
[1] |
T. Li, Controllability and Observabilty for Quasilinear Hyperbolic Systems, AIMS Series on Applied Mathematics, 3, (2010), American Institute of Mathematical Sciences & Higher Education Press, Springfield, Beijing. |
[2] |
T. Li and Y. Jin, Semi-global $C^1$ solution to the mixed initial-boundary value problem for quasilinear hyperbolic systems, Chin. Ann. Math., 22 (2001), 325-336.
doi: 10.1142/S0252959901000334. |
[3] |
T. Li and B. Rao, Local exact boundary controllability for a class of quasilinear hyperbolic systems, Chin. Ann. Math., 23 (2002), 209-218.
doi: 10.1142/S0252959902000201. |
[4] |
T. Li and B. Rao, Exact boundary controllability for quasilinear hyperbolic systems, SIAM J. Control Optim., 41 (2003), 1748-1755. |
[5] |
T. Li and B. Rao, Strong(Weak) exact controllability and Strong(Weak) exact observability for quasilinear hyperbolic systems[J], Chin. Ann. Math., 31 (2010), 723-742.
doi: 10.1007/s11401-010-0600-9. |
[6] |
T. Li and W. Yu, Boundary Value Problems for Quasilinear Hyperbolic Systems, Duke University Mathematics Series V, Duke University Press, Durham, 1985. |
[7] |
J.-L. Lions, Exact controllability, stabilization and pertubations for distributed systems, SIAM Rev., 30 (1988), 1-68.
doi: 10.1137/1030001. |
[8] |
D. L. Russell, Controllability and stabilizability theory for linear partial differential equations: Recent progress and open questions, SIAM Rev., 20 (1978), 639-739.
doi: 10.1137/1020095. |
[9] |
L. Yu, Semi-global $C^1$ solution to the mixed initial-boundary value problem for a kind of quasilinear hyperbolic systems (in Chinese), Chin. Ann. Math., 25 (2004), 549-560. |
[10] |
K. Zhuang, Exact controllability with internal controls for first order quasilinear hyperbolic systems with zero eigenvalues,, to appear in Chin. Ann. Math., ().
|
[1] |
Tatsien Li (Daqian Li). Global exact boundary controllability for first order quasilinear hyperbolic systems. Discrete and Continuous Dynamical Systems - B, 2010, 14 (4) : 1419-1432. doi: 10.3934/dcdsb.2010.14.1419 |
[2] |
Tatsien Li, Bopeng Rao, Zhiqiang Wang. Exact boundary controllability and observability for first order quasilinear hyperbolic systems with a kind of nonlocal boundary conditions. Discrete and Continuous Dynamical Systems, 2010, 28 (1) : 243-257. doi: 10.3934/dcds.2010.28.243 |
[3] |
Klaus-Jochen Engel, Marjeta Kramar FijavŽ. Exact and positive controllability of boundary control systems. Networks and Heterogeneous Media, 2017, 12 (2) : 319-337. doi: 10.3934/nhm.2017014 |
[4] |
Tatsien Li, Bopeng Rao, Zhiqiang Wang. A note on the one-side exact boundary controllability for quasilinear hyperbolic systems. Communications on Pure and Applied Analysis, 2009, 8 (1) : 405-418. doi: 10.3934/cpaa.2009.8.405 |
[5] |
Manuel González-Burgos, Sergio Guerrero, Jean Pierre Puel. Local exact controllability to the trajectories of the Boussinesq system via a fictitious control on the divergence equation. Communications on Pure and Applied Analysis, 2009, 8 (1) : 311-333. doi: 10.3934/cpaa.2009.8.311 |
[6] |
Nicolás Carreño. Local controllability of the $N$-dimensional Boussinesq system with $N-1$ scalar controls in an arbitrary control domain. Mathematical Control and Related Fields, 2012, 2 (4) : 361-382. doi: 10.3934/mcrf.2012.2.361 |
[7] |
Ciro D'Apice, Olha P. Kupenko, Rosanna Manzo. On boundary optimal control problem for an arterial system: First-order optimality conditions. Networks and Heterogeneous Media, 2018, 13 (4) : 585-607. doi: 10.3934/nhm.2018027 |
[8] |
Libin Wang. Breakdown of $C^1$ solution to the Cauchy problem for quasilinear hyperbolic systems with characteristics with constant multiplicity. Communications on Pure and Applied Analysis, 2003, 2 (1) : 77-89. doi: 10.3934/cpaa.2003.2.77 |
[9] |
Mohammed Aassila. Exact boundary controllability of a coupled system. Discrete and Continuous Dynamical Systems, 2000, 6 (3) : 665-672. doi: 10.3934/dcds.2000.6.665 |
[10] |
Karine Beauchard, Morgan Morancey. Local controllability of 1D Schrödinger equations with bilinear control and minimal time. Mathematical Control and Related Fields, 2014, 4 (2) : 125-160. doi: 10.3934/mcrf.2014.4.125 |
[11] |
Shu-Guang Shao, Shu Wang, Wen-Qing Xu, Yu-Li Ge. On the local C1, α solution of ideal magneto-hydrodynamical equations. Discrete and Continuous Dynamical Systems, 2017, 37 (4) : 2103-2113. doi: 10.3934/dcds.2017090 |
[12] |
Umberto De Maio, Akamabadath K. Nandakumaran, Carmen Perugia. Exact internal controllability for the wave equation in a domain with oscillating boundary with Neumann boundary condition. Evolution Equations and Control Theory, 2015, 4 (3) : 325-346. doi: 10.3934/eect.2015.4.325 |
[13] |
Bao-Zhu Guo, Liang Zhang. Local exact controllability to positive trajectory for parabolic system of chemotaxis. Mathematical Control and Related Fields, 2016, 6 (1) : 143-165. doi: 10.3934/mcrf.2016.6.143 |
[14] |
Larissa V. Fardigola. Controllability problems for the 1-d wave equations on a half-axis with Neumann boundary control. Mathematical Control and Related Fields, 2013, 3 (2) : 161-183. doi: 10.3934/mcrf.2013.3.161 |
[15] |
José R. Quintero, Alex M. Montes. Exact controllability and stabilization for a general internal wave system of Benjamin-Ono type. Evolution Equations and Control Theory, 2022, 11 (3) : 681-709. doi: 10.3934/eect.2021021 |
[16] |
Lijuan Wang, Qishu Yan. Optimal control problem for exact synchronization of parabolic system. Mathematical Control and Related Fields, 2019, 9 (3) : 411-424. doi: 10.3934/mcrf.2019019 |
[17] |
Bopeng Rao, Laila Toufayli, Ali Wehbe. Stability and controllability of a wave equation with dynamical boundary control. Mathematical Control and Related Fields, 2015, 5 (2) : 305-320. doi: 10.3934/mcrf.2015.5.305 |
[18] |
Fengyan Yang. Exact boundary null controllability for a coupled system of plate equations with variable coefficients. Evolution Equations and Control Theory, 2021 doi: 10.3934/eect.2021036 |
[19] |
Belhassen Dehman, Jean-Pierre Raymond. Exact controllability for the Lamé system. Mathematical Control and Related Fields, 2015, 5 (4) : 743-760. doi: 10.3934/mcrf.2015.5.743 |
[20] |
Giuseppe Floridia, Hiroshi Takase, Masahiro Yamamoto. A Carleman estimate and an energy method for a first-order symmetric hyperbolic system. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2022016 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]