Citation: |
[1] |
D. Applebaum, Lévy Processes and Stochastic Calculus, Cambridge University Press, Cambridge, 2009.doi: 10.1017/CBO9780511809781. |
[2] |
C. Brandle, E. Colorado, A. de Pablo and U. Sanchez, A concave-convex elliptic problem involving the fractional Laplacian, Proc. Roy. Soc. Edinburgh Sect. A, 143 (2013), 39-71.doi: 10.1017/S0308210511000175. |
[3] |
J. Bertoin, Lévy Processes, Cambridge Tracts in Mathematics, 1996. |
[4] |
K. Bogdan, T. Kulczycki and A. Nowak, Gradient estimates for harmonic and q-harmonic functions of symmetric stable processes, Illinois J. Math., 46 (2002), 541-556. |
[5] |
J. P. Bouchard and A. Georges, Anomalous diffusion in disordered media, Statistical mechanics, models and physical applications, Physics reports, 195 (1990), 127-293.doi: 10.1016/0370-1573(90)90099-N. |
[6] |
L. Caffarelli and L. Vasseur, Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation, Ann. Math., 171 (2010), 1903-1930.doi: 10.4007/annals.2010.171.1903. |
[7] |
L. Cao and W. Chen, Liouville type theorems for poly-harmonic Navier problems, Disc. Cont. Dyna. Sys., 33 (2013), 3937-3955.doi: 10.3934/dcds.2013.33.3937. |
[8] |
G. Caristi, L. D'Ambrosio and E. Mitidieri, Representation formulae for solutions to some classes of higher order systems and related Liouville theorems, Milan J. Math., 76 (2008), 27-67.doi: 10.1007/s00032-008-0090-3. |
[9] |
W. Chen and C. Li, Classifcation of positive solutions for nonlinear differential and integral systems with critical exponents, Acta Mathematica Scientia, 29 (2009), 949-960.doi: 10.1016/S0252-9602(09)60079-5. |
[10] |
W. Chen and C. Li, Methods on Nonlinear Elliptic Equations, AIMS Book Series on Diff.Equa.Dyn.Sys., 2010. |
[11] |
W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation, Comm. Pure Appl. Math, 59 (2006), 330-343.doi: 10.1002/cpa.20116. |
[12] |
W. Chen, C. Li and B. Ou, Qualitative properties of solutions for an integral equation, Disc. Cont. Dyn. Sys., 12 (2005), 347-354. |
[13] |
P. Constantin, Euler equations, navier-stokes equations and turbulence, in Mathematical Foundation of Turbulent Viscous Flows, 1871 (2006), 1-43.doi: 10.1007/11545989_1. |
[14] |
X. Cabré and Y. Sire, Nonlinear equations for fractional Laplacians, I: Regularity, maximum principles, Annales de l'Institut Henri Poincare (C) Non Linear Analysis, 31 (2014), 23-53.doi: 10.1016/j.anihpc.2013.02.001. |
[15] |
X. Cabré and J. Tan, Positive solutions of nonlinear problems involving the square root of the Laplacian, Advances in Math., 224 (2010), 2052-2093.doi: 10.1016/j.aim.2010.01.025. |
[16] |
I. Capuzzo-Dolcetta and A. Cutri, On the Liouville property for sub-Laplacians, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 25 (1997), 239-256. |
[17] |
L. Dupaigne and Y. Sire, A Liouville theorem for nonlocal elliptic equations, Symmetry for elliptic PDEs Contemp. Math., 528 (2010), 105-114.doi: 10.1090/conm/528/10417. |
[18] |
Y. Fang and W. Chen, A Liouville type theorem for poly-harmonic Dirichlet problem in a half space, Advances in Math., 229 (2012), 2835-2867.doi: 10.1016/j.aim.2012.01.018. |
[19] |
Y. Fang and J. Zhang, Nonexistence of positive solution for an integral equation on a half-space $R^n_+$, Comm. Pure and Applied Analysis, 12 (2013), 663-678.doi: 10.3934/cpaa.2013.12.663. |
[20] |
T. Kulczycki, Properties of Green function of symmetric stable processes, Probability and Mathematical Statistics, 17 (1997), 339-364. |
[21] |
G. Lu and J. Zhu, An overdetermined problem in Riesz-potential and fractional Laplacian, Nonlinear Analysis, 75 (2012), 3036-3048.doi: 10.1016/j.na.2011.11.036. |
[22] |
L. Ma and D. Chen, A Liouville type theorem for an integral system, Comm. Pure Appl. Anal., 5 (2006), 855-859.doi: 10.3934/cpaa.2006.5.855. |
[23] |
E. Mitidieri, Non existence of positive solutions of semilinear elliptic systems in $R^N$, Differential & Integral Equations, 9 (1996), 465-479. |
[24] |
L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator, Comm. Pure Appl. Math., 60 (2007), 67-112.doi: 10.1002/cpa.20153. |
[25] |
E. M. Stein, Singular Integrals and Differentiablity Properties of Funciotns, Princeton University Press, Princeton, 1970. |
[26] |
P. Stinga and C. Zhang, Harnack's inequality for fractional nonlocal equations, Disc. Cont. Dyn. Sys., 33 (2013), 3153-3170.doi: 10.3934/dcds.2013.33.3153. |
[27] |
V. Tarasov and G. Zaslasvky, Fractional dynamics of systems with long-range interaction, Comm. Nonl. Sci. Numer. Simul., 11 (2006), 885-889.doi: 10.1016/j.cnsns.2006.03.005. |
[28] |
M. Zhu, Liouville theorems on some indefinite equations, Proc. Roy. Soc. Edinburgh Sect. A, 129 (1999), 649-661.doi: 10.1017/S0308210500021569. |
[29] |
R. Zhuo, W. Chen, X. Cui and Z. Yuan, A Liouville theorem for the fractional Laplacian, arXiv:1401.7402. |