March  2016, 36(3): 1143-1157. doi: 10.3934/dcds.2016.36.1143

An improved Hardy inequality for a nonlocal operator

1. 

Laboratoire D'Analyse Nonlinéaire et Mathématiques Appliquées, Département de Mathématiques, Faculté des sciences, Université About Baker Belkad, Tlemcen 13000, Algeria

2. 

Centro de Modelamiento Matemático (CMM), Universidad de Chile, Beauchef 851, Santiago, Chile

Received  January 2015 Revised  June 2015 Published  August 2015

Let $0 < s < 1$ and $1< p < 2$ be such that $ps < N$ and let $\Omega$ be a bounded domain containing the origin. In this paper we prove the following improved Hardy inequality:
    Given $1 \le q < p$, there exists a positive constant $C\equiv C(\Omega, q, N, s)$ such that $$ \int\limits_{\mathbb{R}^N}\int\limits_{\mathbb{R}^N} \, \frac{|u(x)-u(y)|^{p}}{|x-y|^{N+ps}}\,dx\,dy - \Lambda_{N,p,s} \int\limits_{\mathbb{R}^N} \frac{|u(x)|^p}{|x|^{ps}}\,dx$$$$\geq C \int\limits_{\Omega}\int\limits_{\Omega}\frac{|u(x)-u(y)|^p}{|x-y|^{N+qs}}dxdy $$ for all $u \in \mathcal{C}_0^\infty({\Omega})$. Here $\Lambda_{N,p,s}$ is the optimal constant in the Hardy inequality (1.1).
Citation: Boumediene Abdellaoui, Fethi Mahmoudi. An improved Hardy inequality for a nonlocal operator. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1143-1157. doi: 10.3934/dcds.2016.36.1143
References:
[1]

B. Abdellaoui and R. Bentiffour, Caffarelli-Kohn-Nirenberg type inequalities of fractional order and applications,, submitted., ().   Google Scholar

[2]

B. Abdellaoui, I. Peral and A. Primo, A remark on the fractional Hardy inequality with a remainder term,, C. R. Acad. Sci. Paris, 352 (2014), 299.  doi: 10.1016/j.crma.2014.02.003.  Google Scholar

[3]

R. A. Adams, Sobolev Spaces,, Academic Press, (1975).   Google Scholar

[4]

F. J. Almgren and E. H. Lieb, Symmetric decreasing rearrangement is sometimes continuous,, J. Amer. Math. Soc., 2 (1989), 683.  doi: 10.1090/S0894-0347-1989-1002633-4.  Google Scholar

[5]

B. Barrios, M. Medina and I. Peral, Some remarks on the solvability of non-local elliptic problems with the Hardy potential,, Communications in Contemporary Mathematics, 16 (2014).  doi: 10.1142/S0219199713500466.  Google Scholar

[6]

B. Barrios, I. Peral and S. Vita, Some remarks about the summability of nonlocal nonlinear problems,, Adv. Nonlinear Anal., 4 (2015), 91.  doi: 10.1515/anona-2015-0012.  Google Scholar

[7]

H. Brezis, L. Dupaigne and A. Tesei, On a semilinear equation with inverse-square potential,, Selecta Math., 11 (2005), 1.  doi: 10.1007/s00029-005-0003-z.  Google Scholar

[8]

H. Brezis and S. Kamin, Sublinear elliptic equations in $\mathbbR^N$,, Manuscripta Math., 74 (1992), 87.  doi: 10.1007/BF02567660.  Google Scholar

[9]

L. Caffarelli, R. Kohn and L. Nirenberg, First order interpolation inequalities with weights,, Compositio Math., 53 (1984), 259.   Google Scholar

[10]

L. A. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian,, Comm. Partial Differential Equations, 32 (2007), 1245.  doi: 10.1080/03605300600987306.  Google Scholar

[11]

A. Di castro, T. Kuusi and G. Palatucci, Nonlocal Harnack inequalities,, J. Funct. Anal., 267 (2014), 1807.  doi: 10.1016/j.jfa.2014.05.023.  Google Scholar

[12]

E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces,, Bull. Sci. math., 136 (2012), 521.  doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar

[13]

E. B. Fabes, C. E. Kenig and R. P. Serapioni, The local regularity of solutions of degenerate elliptic equations,, Comm. Partial Differential Equations, 7 (1982), 77.  doi: 10.1080/03605308208820218.  Google Scholar

[14]

M. M. Fall, Semilinear elliptic equations for the fractional Laplacian with Hardy potential,, preprint, ().   Google Scholar

[15]

F. Ferrari and I. Verbitsky, Radial fractional Laplace operators and Hessian inequalities,, J. Differential Equations, 253 (2012), 244.  doi: 10.1016/j.jde.2012.03.024.  Google Scholar

[16]

R. Frank, A simple proof of Hardy-Lieb-Thirring inequalities,, Comm. Math. Phys., 290 (2009), 789.  doi: 10.1007/s00220-009-0759-7.  Google Scholar

[17]

R. Frank, E. H. Lieb and R. Seiringer, Hardy-Lieb-Thirring inequalities for fractional Schrödinger operators,, Journal of the American Mathematical Society, 21 (2008), 925.  doi: 10.1090/S0894-0347-07-00582-6.  Google Scholar

[18]

R. Frank and R. Seiringer, Non-linear ground state representations and sharp Hardy inequalities,, Journal of Functional Analysis, 255 (2008), 3407.  doi: 10.1016/j.jfa.2008.05.015.  Google Scholar

[19]

L. Grafakos, Classical Fourier Analysis, Third edition,, Graduate Texts in Mathematics, 249 (2014).  doi: 10.1007/978-1-4939-1194-3.  Google Scholar

[20]

I. W. Herbst, Spectral theory of the operator $(p^2+m^2)^{1/2}-Ze^2/r$,, Commun. Math. Phys., 53 (1977), 285.   Google Scholar

[21]

J. Heinonen, T. Kilpelinen and O. Martio, Nonlinear Potential Theory of Degenerate Elliptic Equations,, Dover Publications, (2006).   Google Scholar

[22]

T. Leonori, I. Peral, A. Primo and F. Soria, Basic estimates for solutions of a class of nonlocal elliptic and parabolic equations,, Discrete and Continuous Dynamical Systems, 35 (2015), 6031.  doi: 10.3934/dcds.2015.35.6031.  Google Scholar

[23]

E. H. Lieb and M. Loss, Analysis, Second edition,, Graduate Studies in Mathematics, 14 (2001).  doi: 10.1090/gsm/014.  Google Scholar

[24]

P. Lindqvist, On the equation $\D_p u+ \lambda |u|^{p-2}u =0$,, Proc. Amer. Math. Soc., 109 (1990), 157.  doi: 10.1090/S0002-9939-1990-1007505-7.  Google Scholar

[25]

V. Maz'ya, Sobolev Spaces with Applications to Elliptic Partial Differential Equations,, Second edition, 342 (2011).  doi: 10.1007/978-3-642-15564-2.  Google Scholar

show all references

References:
[1]

B. Abdellaoui and R. Bentiffour, Caffarelli-Kohn-Nirenberg type inequalities of fractional order and applications,, submitted., ().   Google Scholar

[2]

B. Abdellaoui, I. Peral and A. Primo, A remark on the fractional Hardy inequality with a remainder term,, C. R. Acad. Sci. Paris, 352 (2014), 299.  doi: 10.1016/j.crma.2014.02.003.  Google Scholar

[3]

R. A. Adams, Sobolev Spaces,, Academic Press, (1975).   Google Scholar

[4]

F. J. Almgren and E. H. Lieb, Symmetric decreasing rearrangement is sometimes continuous,, J. Amer. Math. Soc., 2 (1989), 683.  doi: 10.1090/S0894-0347-1989-1002633-4.  Google Scholar

[5]

B. Barrios, M. Medina and I. Peral, Some remarks on the solvability of non-local elliptic problems with the Hardy potential,, Communications in Contemporary Mathematics, 16 (2014).  doi: 10.1142/S0219199713500466.  Google Scholar

[6]

B. Barrios, I. Peral and S. Vita, Some remarks about the summability of nonlocal nonlinear problems,, Adv. Nonlinear Anal., 4 (2015), 91.  doi: 10.1515/anona-2015-0012.  Google Scholar

[7]

H. Brezis, L. Dupaigne and A. Tesei, On a semilinear equation with inverse-square potential,, Selecta Math., 11 (2005), 1.  doi: 10.1007/s00029-005-0003-z.  Google Scholar

[8]

H. Brezis and S. Kamin, Sublinear elliptic equations in $\mathbbR^N$,, Manuscripta Math., 74 (1992), 87.  doi: 10.1007/BF02567660.  Google Scholar

[9]

L. Caffarelli, R. Kohn and L. Nirenberg, First order interpolation inequalities with weights,, Compositio Math., 53 (1984), 259.   Google Scholar

[10]

L. A. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian,, Comm. Partial Differential Equations, 32 (2007), 1245.  doi: 10.1080/03605300600987306.  Google Scholar

[11]

A. Di castro, T. Kuusi and G. Palatucci, Nonlocal Harnack inequalities,, J. Funct. Anal., 267 (2014), 1807.  doi: 10.1016/j.jfa.2014.05.023.  Google Scholar

[12]

E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces,, Bull. Sci. math., 136 (2012), 521.  doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar

[13]

E. B. Fabes, C. E. Kenig and R. P. Serapioni, The local regularity of solutions of degenerate elliptic equations,, Comm. Partial Differential Equations, 7 (1982), 77.  doi: 10.1080/03605308208820218.  Google Scholar

[14]

M. M. Fall, Semilinear elliptic equations for the fractional Laplacian with Hardy potential,, preprint, ().   Google Scholar

[15]

F. Ferrari and I. Verbitsky, Radial fractional Laplace operators and Hessian inequalities,, J. Differential Equations, 253 (2012), 244.  doi: 10.1016/j.jde.2012.03.024.  Google Scholar

[16]

R. Frank, A simple proof of Hardy-Lieb-Thirring inequalities,, Comm. Math. Phys., 290 (2009), 789.  doi: 10.1007/s00220-009-0759-7.  Google Scholar

[17]

R. Frank, E. H. Lieb and R. Seiringer, Hardy-Lieb-Thirring inequalities for fractional Schrödinger operators,, Journal of the American Mathematical Society, 21 (2008), 925.  doi: 10.1090/S0894-0347-07-00582-6.  Google Scholar

[18]

R. Frank and R. Seiringer, Non-linear ground state representations and sharp Hardy inequalities,, Journal of Functional Analysis, 255 (2008), 3407.  doi: 10.1016/j.jfa.2008.05.015.  Google Scholar

[19]

L. Grafakos, Classical Fourier Analysis, Third edition,, Graduate Texts in Mathematics, 249 (2014).  doi: 10.1007/978-1-4939-1194-3.  Google Scholar

[20]

I. W. Herbst, Spectral theory of the operator $(p^2+m^2)^{1/2}-Ze^2/r$,, Commun. Math. Phys., 53 (1977), 285.   Google Scholar

[21]

J. Heinonen, T. Kilpelinen and O. Martio, Nonlinear Potential Theory of Degenerate Elliptic Equations,, Dover Publications, (2006).   Google Scholar

[22]

T. Leonori, I. Peral, A. Primo and F. Soria, Basic estimates for solutions of a class of nonlocal elliptic and parabolic equations,, Discrete and Continuous Dynamical Systems, 35 (2015), 6031.  doi: 10.3934/dcds.2015.35.6031.  Google Scholar

[23]

E. H. Lieb and M. Loss, Analysis, Second edition,, Graduate Studies in Mathematics, 14 (2001).  doi: 10.1090/gsm/014.  Google Scholar

[24]

P. Lindqvist, On the equation $\D_p u+ \lambda |u|^{p-2}u =0$,, Proc. Amer. Math. Soc., 109 (1990), 157.  doi: 10.1090/S0002-9939-1990-1007505-7.  Google Scholar

[25]

V. Maz'ya, Sobolev Spaces with Applications to Elliptic Partial Differential Equations,, Second edition, 342 (2011).  doi: 10.1007/978-3-642-15564-2.  Google Scholar

[1]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[2]

Anna Canale, Francesco Pappalardo, Ciro Tarantino. Weighted multipolar Hardy inequalities and evolution problems with Kolmogorov operators perturbed by singular potentials. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020274

[3]

Noah Stevenson, Ian Tice. A truncated real interpolation method and characterizations of screened Sobolev spaces. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5509-5566. doi: 10.3934/cpaa.2020250

[4]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[5]

Monia Capanna, Jean C. Nakasato, Marcone C. Pereira, Julio D. Rossi. Homogenization for nonlocal problems with smooth kernels. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020385

[6]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[7]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[8]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[9]

Federico Rodriguez Hertz, Zhiren Wang. On $ \epsilon $-escaping trajectories in homogeneous spaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 329-357. doi: 10.3934/dcds.2020365

[10]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[11]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[12]

Shao-Xia Qiao, Li-Jun Du. Propagation dynamics of nonlocal dispersal equations with inhomogeneous bistable nonlinearity. Electronic Research Archive, , () : -. doi: 10.3934/era.2020116

[13]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[14]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[15]

Vieri Benci, Sunra Mosconi, Marco Squassina. Preface: Applications of mathematical analysis to problems in theoretical physics. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020446

[16]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[17]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[18]

Yahia Zare Mehrjerdi. A new methodology for solving bi-criterion fractional stochastic programming. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020054

[19]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[20]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (80)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]