Citation: |
[1] |
S. Akiyama, M. Barge, V. Berthé, J.-Y. Lee and A. Siegel, On the Pisot Conjecture, in Mathematics of Aperiodic Order (eds. J. Kellendonk, D. Lenz and J. Savinien), Progress in Mathematics, 309, 2015, 33-72. |
[2] |
S. Akiyama and J.-Y. Lee, Algorithm for determining pure pointedness of self-affine tilings, Adv. Math., 226, (2011), 2855-2883.doi: 10.1016/j.aim.2010.07.019. |
[3] |
S. Akiyama and J.-Y. Lee, Computation of pure discrete spectrum of self-affine tilings, preprint. |
[4] |
J. E. Anderson and I. F. Putnam, Topological invariants for substitution tilings and their associated $C^*$-algebras, Ergodic Theory & Dynamical Systems, 18 (1998), 509-537.doi: 10.1017/S0143385798100457. |
[5] |
P. Arnoux and S. Ito, Pisot Substitutions and Rauzy fractals, Bull. Belg. Math Soc., 8 (2001), 181-207. |
[6] |
A. Avila and V. Delecroix, Some monoids of Pisot matrices, preprint, arXiv:1506.03692v1. |
[7] |
V. Baker, M. Barge and J. Kwapisz, Geometric realization and coincidence for reducible non-unimodular Pisot tiling spaces with an application to $\beta$-shifts, Ann. Inst. Fourier (Grenoble), 56 (2006), 2213-2248.doi: 10.5802/aif.2238. |
[8] |
M. Barge, Factors of Pisot tiling spaces and the coincidence rank conjecture, arXiv:1301.7094. |
[9] |
M. Barge and B. Diamond, A complete invariant for the topology of one- dimensional substitution tiling spaces, Ergod. Th. & Dyn. Sys., 21 (2001), 1333-1358.doi: 10.1017/S0143385701001638. |
[10] |
M. Barge and B. Diamond, Coincidence for substitutions of Pisot type, Bull. Soc. Math. France, 130 (2002), 619-626. |
[11] |
M. Barge and J. Kellendonk, Proximality and pure point spectrum for tiling dynamical systems, Michigan Math. J., 62 (2013), 793-822.doi: 10.1307/mmj/1387226166. |
[12] |
M. Barge and J. Kwapisz, Geometric theory of unimodular Pisot substitutions, Amer J. Math., {\bf128} (2006), 1219-1282.doi: 10.1353/ajm.2006.0037. |
[13] |
M. Barge, S. Štimac and R. F. Williams, Pure discrete spectrum in substitution tiling spaces, Disc. and Cont. Dynam. Sys. - A, 2 (2013), 579-597.doi: 10.3934/dcds.2013.33.579. |
[14] |
V. Berthé, J. Bourdon, T. Jolivet and A. Siegel, A combinatorial approach to products of Pisot substitutions, arXiv:1401.0704v1. |
[15] |
V. Berthé, S. Ferenczi and L. Q. Zamboni, Interactions between dynamics, arihtmetics and combinatorics: The good, the bad, and the ugly, in Algebraic and Topological Dynamics, Contemp. Math., 385, Amer. Math. Soc., Providence, RI, 2005, 333-364.doi: 10.1090/conm/385/07205. |
[16] |
V. Berthé, T. Jolivet and A. Siegel, Substitutive Arnoux-Rauzy substitutions have pure discrete spectrum, Unif. Distrib. Theory, 7 (2012), 173-197. |
[17] |
V. Berthé, Multidimensional Euclidean algorithms, numeration and substitutions, Integers, 11B (2011), Paper No. A2, 34pp. |
[18] |
A. Bertrand, Développements en base de Pisot et répartition modulo 1, C. R. Acad. Sci. Paris, 280 (1979), A1-A4. |
[19] |
J. Cassaigne and N. Chekhova, Fonctions de récurrence des suites d'Arnoux-Rauzy et réponse à une questionde Morse et Hedlund, Ann. Inst. Fourier (Grenoble), Numération, Pavages, Substitutions, 56 (2006), 2249-2270.doi: 10.5802/aif.2239. |
[20] |
A. Clark and L. Sadun, When size matters: Subshifts and their related tiling spaces, Ergodic Theory Dynam. Systems, 23 (2003), 1043-1057.doi: 10.1017/S0143385702001633. |
[21] |
E. Dubois, A. Farhane and R. Paysant-Le Roux, The Jacobi-Perron algorithm and Pisot numbers, Acta Arith., 111 (2004), 269-275.doi: 10.4064/aa111-3-4. |
[22] |
H. Ei and S. Ito, Tilings from some non-irreducible, Pisot substitutions, Discrete Math. and Theo. Comp. Science, 7 (2005), 81-121. |
[23] |
M. Hollander and B. Solomyak, Two-symbol Pisot substitutions have pure discrete spectrum, Ergodic Theory & Dynamical Systems, 23 (2003), 533-540.doi: 10.1017/S0143385702001384. |
[24] |
B. Mossé, Puissances de mots et reconnaissabilité des points fixes d'une substitution, Theoretical Computer Science, 99 (1992), 327-334.doi: 10.1016/0304-3975(92)90357-L. |
[25] |
F. Schweiger, Multidimensional Continued Fractions, Oxford Science Publications, Oxford University Press, Oxford, 2000. |
[26] |
K. Schmidt, On periodic expansions of Pisot numbers and Salem numbers, Bull. London Math. Soc., 12 (1980), 269-278.doi: 10.1112/blms/12.4.269. |
[27] |
N. Sidorov, Arithmetic dynamics, in Topics in Dynamics and Ergodic Theory, London Math. Soc. Lecture Note Ser., 310, Cambridge Univ. Press, Cambridge, 2003, 145-189.doi: 10.1017/CBO9780511546716.010. |
[28] |
B. Solomyak, Dynamics of self-similar tilings, Ergod. Th. & Dynam. Sys., 17 (1997), 695-738.doi: 10.1017/S0143385797084988. |
[29] |
B. Solomyak, Nonperiodicity implies unique composition for self-similar translationally finite tilings, Discrete Comput. Geometry, 20 (1998), 265-279.doi: 10.1007/PL00009386. |
[30] |
P. Walters, An Introduction to Ergodic Theory, Springer-Verlag, New York, 1982. |