\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Pure discrete spectrum for a class of one-dimensional substitution tiling systems

Abstract / Introduction Related Papers Cited by
  • We prove that if a primitive and non-periodic substitution is injective on initial letters, constant on final letters, and has Pisot inflation, then the $\mathbb{R}$-action on the corresponding tiling space has pure discrete spectrum. As a consequence, all $\beta$-substitutions for $\beta$ a Pisot simple Parry number have tiling dynamical systems with pure discrete spectrum, as do the Pisot systems arising, for example, from substitutions associated with the Jacobi-Perron and Brun continued fraction algorithms.
    Mathematics Subject Classification: Primary: 37B05, 37B50; Secondary: 11A55, 11A63.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    S. Akiyama, M. Barge, V. Berthé, J.-Y. Lee and A. Siegel, On the Pisot Conjecture, in Mathematics of Aperiodic Order (eds. J. Kellendonk, D. Lenz and J. Savinien), Progress in Mathematics, 309, 2015, 33-72.

    [2]

    S. Akiyama and J.-Y. Lee, Algorithm for determining pure pointedness of self-affine tilings, Adv. Math., 226, (2011), 2855-2883.doi: 10.1016/j.aim.2010.07.019.

    [3]

    S. Akiyama and J.-Y. Lee, Computation of pure discrete spectrum of self-affine tilings, preprint.

    [4]

    J. E. Anderson and I. F. Putnam, Topological invariants for substitution tilings and their associated $C^*$-algebras, Ergodic Theory & Dynamical Systems, 18 (1998), 509-537.doi: 10.1017/S0143385798100457.

    [5]

    P. Arnoux and S. Ito, Pisot Substitutions and Rauzy fractals, Bull. Belg. Math Soc., 8 (2001), 181-207.

    [6]

    A. Avila and V. Delecroix, Some monoids of Pisot matrices, preprint, arXiv:1506.03692v1.

    [7]

    V. Baker, M. Barge and J. Kwapisz, Geometric realization and coincidence for reducible non-unimodular Pisot tiling spaces with an application to $\beta$-shifts, Ann. Inst. Fourier (Grenoble), 56 (2006), 2213-2248.doi: 10.5802/aif.2238.

    [8]

    M. Barge, Factors of Pisot tiling spaces and the coincidence rank conjecture, arXiv:1301.7094.

    [9]

    M. Barge and B. Diamond, A complete invariant for the topology of one- dimensional substitution tiling spaces, Ergod. Th. & Dyn. Sys., 21 (2001), 1333-1358.doi: 10.1017/S0143385701001638.

    [10]

    M. Barge and B. Diamond, Coincidence for substitutions of Pisot type, Bull. Soc. Math. France, 130 (2002), 619-626.

    [11]

    M. Barge and J. Kellendonk, Proximality and pure point spectrum for tiling dynamical systems, Michigan Math. J., 62 (2013), 793-822.doi: 10.1307/mmj/1387226166.

    [12]

    M. Barge and J. Kwapisz, Geometric theory of unimodular Pisot substitutions, Amer J. Math., {\bf128} (2006), 1219-1282.doi: 10.1353/ajm.2006.0037.

    [13]

    M. Barge, S. Štimac and R. F. Williams, Pure discrete spectrum in substitution tiling spaces, Disc. and Cont. Dynam. Sys. - A, 2 (2013), 579-597.doi: 10.3934/dcds.2013.33.579.

    [14]

    V. Berthé, J. Bourdon, T. Jolivet and A. Siegel, A combinatorial approach to products of Pisot substitutions, arXiv:1401.0704v1.

    [15]

    V. Berthé, S. Ferenczi and L. Q. Zamboni, Interactions between dynamics, arihtmetics and combinatorics: The good, the bad, and the ugly, in Algebraic and Topological Dynamics, Contemp. Math., 385, Amer. Math. Soc., Providence, RI, 2005, 333-364.doi: 10.1090/conm/385/07205.

    [16]

    V. Berthé, T. Jolivet and A. Siegel, Substitutive Arnoux-Rauzy substitutions have pure discrete spectrum, Unif. Distrib. Theory, 7 (2012), 173-197.

    [17]

    V. Berthé, Multidimensional Euclidean algorithms, numeration and substitutions, Integers, 11B (2011), Paper No. A2, 34pp.

    [18]

    A. Bertrand, Développements en base de Pisot et répartition modulo 1, C. R. Acad. Sci. Paris, 280 (1979), A1-A4.

    [19]

    J. Cassaigne and N. Chekhova, Fonctions de récurrence des suites d'Arnoux-Rauzy et réponse à une questionde Morse et Hedlund, Ann. Inst. Fourier (Grenoble), Numération, Pavages, Substitutions, 56 (2006), 2249-2270.doi: 10.5802/aif.2239.

    [20]

    A. Clark and L. Sadun, When size matters: Subshifts and their related tiling spaces, Ergodic Theory Dynam. Systems, 23 (2003), 1043-1057.doi: 10.1017/S0143385702001633.

    [21]

    E. Dubois, A. Farhane and R. Paysant-Le Roux, The Jacobi-Perron algorithm and Pisot numbers, Acta Arith., 111 (2004), 269-275.doi: 10.4064/aa111-3-4.

    [22]

    H. Ei and S. Ito, Tilings from some non-irreducible, Pisot substitutions, Discrete Math. and Theo. Comp. Science, 7 (2005), 81-121.

    [23]

    M. Hollander and B. Solomyak, Two-symbol Pisot substitutions have pure discrete spectrum, Ergodic Theory & Dynamical Systems, 23 (2003), 533-540.doi: 10.1017/S0143385702001384.

    [24]

    B. Mossé, Puissances de mots et reconnaissabilité des points fixes d'une substitution, Theoretical Computer Science, 99 (1992), 327-334.doi: 10.1016/0304-3975(92)90357-L.

    [25]

    F. Schweiger, Multidimensional Continued Fractions, Oxford Science Publications, Oxford University Press, Oxford, 2000.

    [26]

    K. Schmidt, On periodic expansions of Pisot numbers and Salem numbers, Bull. London Math. Soc., 12 (1980), 269-278.doi: 10.1112/blms/12.4.269.

    [27]

    N. Sidorov, Arithmetic dynamics, in Topics in Dynamics and Ergodic Theory, London Math. Soc. Lecture Note Ser., 310, Cambridge Univ. Press, Cambridge, 2003, 145-189.doi: 10.1017/CBO9780511546716.010.

    [28]

    B. Solomyak, Dynamics of self-similar tilings, Ergod. Th. & Dynam. Sys., 17 (1997), 695-738.doi: 10.1017/S0143385797084988.

    [29]

    B. Solomyak, Nonperiodicity implies unique composition for self-similar translationally finite tilings, Discrete Comput. Geometry, 20 (1998), 265-279.doi: 10.1007/PL00009386.

    [30]

    P. Walters, An Introduction to Ergodic Theory, Springer-Verlag, New York, 1982.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(157) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return