March  2016, 36(3): 1209-1247. doi: 10.3934/dcds.2016.36.1209

Nonlocal-interaction equations on uniformly prox-regular sets

1. 

Department of Mathematics, Imperial College, London, London SW7 2AZ

2. 

Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, United States, United States

Received  April 2014 Revised  June 2015 Published  August 2015

We study the well-posedness of a class of nonlocal-interaction equations on general domains $\Omega\subset \mathbb{R}^{d}$, including nonconvex ones. We show that under mild assumptions on the regularity of domains (uniform prox-regularity), for $\lambda$-geodesically convex interaction and external potentials, the nonlocal-interaction equations have unique weak measure solutions. Moreover, we show quantitative estimates on the stability of solutions which quantify the interplay of the geometry of the domain and the convexity of the energy. We use these results to investigate on which domains and for which potentials the solutions aggregate to a single point as time goes to infinity. Our approach is based on the theory of gradient flows in spaces of probability measures.
Citation: José A. Carrillo, Dejan Slepčev, Lijiang Wu. Nonlocal-interaction equations on uniformly prox-regular sets. Discrete and Continuous Dynamical Systems, 2016, 36 (3) : 1209-1247. doi: 10.3934/dcds.2016.36.1209
References:
[1]

D. Alexander, I. Kim and Y. Yao, Quasi-static evolution and congested crowd transport, Nolinearity, 27 (2014), 823-858. doi: 10.1088/0951-7715/27/4/823.

[2]

L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures, Second edition, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2008.

[3]

A. J. Bernoff and C. M. Topaz, A primer of swarm equilibria, SIAM J. Appl. Dyn. Syst., 10 (2011), 212-250. doi: 10.1137/100804504.

[4]

M. Bounkhel, Regularity Concepts in Nonsmooth Analysis. Theory and Applications, Springer Optimization and Its Applications, 59, Springer, New York, 2012. doi: 10.1007/978-1-4614-1019-5.

[5]

J. A. Carrillo, M. Di Francesco, A. Figalli, T. Laurent and D. Slepčev, Global-in-time weak measure solutions and finite-time aggregation for nonlocal interaction equations, Duke Math. J., 156 (2011), 229-271. doi: 10.1215/00127094-2010-211.

[6]

J. A. Carrillo, S. Lisini and E. Mainini, Gradient flows for non-smooth interaction potentials, Nonlinear Anal., 100 (2014), 122-147. doi: 10.1016/j.na.2014.01.010.

[7]

F. H. Clarke, R. J. Stern and P. R. Wolenski, Proximal smoothness and the lower-$C^2$ property, J. Convex Anal., 2 (1995), 117-144.

[8]

J. F. Edmond and L. Thibault, Relaxation of an optimal control problem involving a perturbed sweeping process, Math. Program., 104 (2005), 347-373. doi: 10.1007/s10107-005-0619-y.

[9]

J. F. Edmond and L. Thibault, BV solutions of nonconvex sweeping process differential inclusion with perturbation, J. Differential Equations, 226 (2006), 135-179. doi: 10.1016/j.jde.2005.12.005.

[10]

I. Fonseca and G. Leoni, Modern Methods in the Calculus of Variations: $L^p$ Spaces, Springer Monographs in Mathematics, Springer, New York, 2007.

[11]

R. Jordan, D. Kinderlehrer and F. Otto, The variational formulation of the Fokker-Planck equation, SIAM J. Math. Anal., 29 (1998), 1-17. doi: 10.1137/S0036141096303359.

[12]

B. Maury, A. Roudneff-Chupin and F. Santambrogio, A macroscopic crowd motion model of gradient flow type, Math. Models Methods Appl. Sci., 20 (2010), 1787-1821. doi: 10.1142/S0218202510004799.

[13]

B. Maury, A. Roudneff-Chupin, F. Santambrogio and J. Venel, Handling congestion in crowd motion modeling, Netw. Heterog. Media, 6 (2011), 485-519. doi: 10.3934/nhm.2011.6.485.

[14]

J.-J. Moreau, Décomposition orthogonale d'un espace hilbertien selon deux cônes mutuellement polaires, C. R. Acad. Sci. Paris, 255 (1962), 238-240.

[15]

R. A. Poliquin, R. T. Rockafellar and L. Thibault, Local differentiability of distance functions, Trans. Amer. Math. Soc., 352 (2000), 5231-5249. doi: 10.1090/S0002-9947-00-02550-2.

[16]

R. T. Rockafellar, Convex Analysis, Princeton Mathematical Series, No. 28, Princeton University Press, Princeton, N. J., 1970.

[17]

C. Topaz, A. Bernoff, S. S. Logan and W. Toolson, A model for rolling swarms of locusts, Eur. Phys. J. Special Topics, 157 (2008), 93-109. doi: 10.1140/epjst/e2008-00633-y.

[18]

C. M. Topaz, M. R. D'Orsogna, L. Edelstein-Keshet and A. J. Bernoff, Locust dynamics: Behavioral phase change and swarming, PLoS Comput. Biol., 8 (2012), e1002642, 11pp. doi: 10.1371/journal.pcbi.1002642.

[19]

J. Venel, A numerical scheme for a class of sweeping processes, Numer. Math., 118 (2011), 367-400. doi: 10.1007/s00211-010-0329-0.

[20]

C. Villani, Topics in Optimal Transportation, Graduate Studies in Mathematics, 58, American Mathematical Society, Providence, RI, 2003.

[21]

C. Villani, Optimal Transport. Old and New, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 338, Springer-Verlag, Berlin, 2009. doi: 10.1007/978-3-540-71050-9.

[22]

L. Wu and D. Slepčev, Nonlocal interaction equations in environments with heterogeneities and boundaries, Comm. Partial Differential Equations, 40 (2015), 1241-1281. doi: 10.1080/03605302.2015.1015033.

[23]

L. Wu and D. Slepčev, Nonlocal interaction equations in environments with heterogeneities and boundaries: Compactly supported initial data case,, in preparation., (). 

show all references

References:
[1]

D. Alexander, I. Kim and Y. Yao, Quasi-static evolution and congested crowd transport, Nolinearity, 27 (2014), 823-858. doi: 10.1088/0951-7715/27/4/823.

[2]

L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures, Second edition, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2008.

[3]

A. J. Bernoff and C. M. Topaz, A primer of swarm equilibria, SIAM J. Appl. Dyn. Syst., 10 (2011), 212-250. doi: 10.1137/100804504.

[4]

M. Bounkhel, Regularity Concepts in Nonsmooth Analysis. Theory and Applications, Springer Optimization and Its Applications, 59, Springer, New York, 2012. doi: 10.1007/978-1-4614-1019-5.

[5]

J. A. Carrillo, M. Di Francesco, A. Figalli, T. Laurent and D. Slepčev, Global-in-time weak measure solutions and finite-time aggregation for nonlocal interaction equations, Duke Math. J., 156 (2011), 229-271. doi: 10.1215/00127094-2010-211.

[6]

J. A. Carrillo, S. Lisini and E. Mainini, Gradient flows for non-smooth interaction potentials, Nonlinear Anal., 100 (2014), 122-147. doi: 10.1016/j.na.2014.01.010.

[7]

F. H. Clarke, R. J. Stern and P. R. Wolenski, Proximal smoothness and the lower-$C^2$ property, J. Convex Anal., 2 (1995), 117-144.

[8]

J. F. Edmond and L. Thibault, Relaxation of an optimal control problem involving a perturbed sweeping process, Math. Program., 104 (2005), 347-373. doi: 10.1007/s10107-005-0619-y.

[9]

J. F. Edmond and L. Thibault, BV solutions of nonconvex sweeping process differential inclusion with perturbation, J. Differential Equations, 226 (2006), 135-179. doi: 10.1016/j.jde.2005.12.005.

[10]

I. Fonseca and G. Leoni, Modern Methods in the Calculus of Variations: $L^p$ Spaces, Springer Monographs in Mathematics, Springer, New York, 2007.

[11]

R. Jordan, D. Kinderlehrer and F. Otto, The variational formulation of the Fokker-Planck equation, SIAM J. Math. Anal., 29 (1998), 1-17. doi: 10.1137/S0036141096303359.

[12]

B. Maury, A. Roudneff-Chupin and F. Santambrogio, A macroscopic crowd motion model of gradient flow type, Math. Models Methods Appl. Sci., 20 (2010), 1787-1821. doi: 10.1142/S0218202510004799.

[13]

B. Maury, A. Roudneff-Chupin, F. Santambrogio and J. Venel, Handling congestion in crowd motion modeling, Netw. Heterog. Media, 6 (2011), 485-519. doi: 10.3934/nhm.2011.6.485.

[14]

J.-J. Moreau, Décomposition orthogonale d'un espace hilbertien selon deux cônes mutuellement polaires, C. R. Acad. Sci. Paris, 255 (1962), 238-240.

[15]

R. A. Poliquin, R. T. Rockafellar and L. Thibault, Local differentiability of distance functions, Trans. Amer. Math. Soc., 352 (2000), 5231-5249. doi: 10.1090/S0002-9947-00-02550-2.

[16]

R. T. Rockafellar, Convex Analysis, Princeton Mathematical Series, No. 28, Princeton University Press, Princeton, N. J., 1970.

[17]

C. Topaz, A. Bernoff, S. S. Logan and W. Toolson, A model for rolling swarms of locusts, Eur. Phys. J. Special Topics, 157 (2008), 93-109. doi: 10.1140/epjst/e2008-00633-y.

[18]

C. M. Topaz, M. R. D'Orsogna, L. Edelstein-Keshet and A. J. Bernoff, Locust dynamics: Behavioral phase change and swarming, PLoS Comput. Biol., 8 (2012), e1002642, 11pp. doi: 10.1371/journal.pcbi.1002642.

[19]

J. Venel, A numerical scheme for a class of sweeping processes, Numer. Math., 118 (2011), 367-400. doi: 10.1007/s00211-010-0329-0.

[20]

C. Villani, Topics in Optimal Transportation, Graduate Studies in Mathematics, 58, American Mathematical Society, Providence, RI, 2003.

[21]

C. Villani, Optimal Transport. Old and New, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 338, Springer-Verlag, Berlin, 2009. doi: 10.1007/978-3-540-71050-9.

[22]

L. Wu and D. Slepčev, Nonlocal interaction equations in environments with heterogeneities and boundaries, Comm. Partial Differential Equations, 40 (2015), 1241-1281. doi: 10.1080/03605302.2015.1015033.

[23]

L. Wu and D. Slepčev, Nonlocal interaction equations in environments with heterogeneities and boundaries: Compactly supported initial data case,, in preparation., (). 

[1]

Abraham Sylla. Influence of a slow moving vehicle on traffic: Well-posedness and approximation for a mildly nonlocal model. Networks and Heterogeneous Media, 2021, 16 (2) : 221-256. doi: 10.3934/nhm.2021005

[2]

Peng Jiang. Global well-posedness and large time behavior of classical solutions to the diffusion approximation model in radiation hydrodynamics. Discrete and Continuous Dynamical Systems, 2017, 37 (4) : 2045-2063. doi: 10.3934/dcds.2017087

[3]

José Antonio Carrillo, Marco Di Francesco, Antonio Esposito, Simone Fagioli, Markus Schmidtchen. Measure solutions to a system of continuity equations driven by Newtonian nonlocal interactions. Discrete and Continuous Dynamical Systems, 2020, 40 (2) : 1191-1231. doi: 10.3934/dcds.2020075

[4]

Xiaoli Li, Boling Guo. Well-posedness for the three-dimensional compressible liquid crystal flows. Discrete and Continuous Dynamical Systems - S, 2016, 9 (6) : 1913-1937. doi: 10.3934/dcdss.2016078

[5]

Luc Molinet, Francis Ribaud. On global well-posedness for a class of nonlocal dispersive wave equations. Discrete and Continuous Dynamical Systems, 2006, 15 (2) : 657-668. doi: 10.3934/dcds.2006.15.657

[6]

Manas Bhatnagar, Hailiang Liu. Well-posedness and critical thresholds in a nonlocal Euler system with relaxation. Discrete and Continuous Dynamical Systems, 2021, 41 (11) : 5271-5289. doi: 10.3934/dcds.2021076

[7]

Igor Chueshov, Irena Lasiecka, Justin Webster. Flow-plate interactions: Well-posedness and long-time behavior. Discrete and Continuous Dynamical Systems - S, 2014, 7 (5) : 925-965. doi: 10.3934/dcdss.2014.7.925

[8]

Keyan Wang. Global well-posedness for a transport equation with non-local velocity and critical diffusion. Communications on Pure and Applied Analysis, 2008, 7 (5) : 1203-1210. doi: 10.3934/cpaa.2008.7.1203

[9]

José Antonio Carrillo, Yanghong Huang, Francesco Saverio Patacchini, Gershon Wolansky. Numerical study of a particle method for gradient flows. Kinetic and Related Models, 2017, 10 (3) : 613-641. doi: 10.3934/krm.2017025

[10]

Boris P. Andreianov, Giuseppe Maria Coclite, Carlotta Donadello. Well-posedness for vanishing viscosity solutions of scalar conservation laws on a network. Discrete and Continuous Dynamical Systems, 2017, 37 (11) : 5913-5942. doi: 10.3934/dcds.2017257

[11]

Jinkai Li, Edriss Titi. Global well-posedness of strong solutions to a tropical climate model. Discrete and Continuous Dynamical Systems, 2016, 36 (8) : 4495-4516. doi: 10.3934/dcds.2016.36.4495

[12]

Young-Sam Kwon. On the well-posedness of entropy solutions for conservation laws with source terms. Discrete and Continuous Dynamical Systems, 2009, 25 (3) : 933-949. doi: 10.3934/dcds.2009.25.933

[13]

Qihua Huang, Hao Wang. A toxin-mediated size-structured population model: Finite difference approximation and well-posedness. Mathematical Biosciences & Engineering, 2016, 13 (4) : 697-722. doi: 10.3934/mbe.2016015

[14]

Xinjie Dai, Aiguo Xiao, Weiping Bu. Stochastic fractional integro-differential equations with weakly singular kernels: Well-posedness and Euler–Maruyama approximation. Discrete and Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021225

[15]

Wenjing Zhao. Local well-posedness and blow-up criteria of magneto-viscoelastic flows. Discrete and Continuous Dynamical Systems, 2018, 38 (9) : 4637-4655. doi: 10.3934/dcds.2018203

[16]

Jan Prüss, Yoshihiro Shibata, Senjo Shimizu, Gieri Simonett. On well-posedness of incompressible two-phase flows with phase transitions: The case of equal densities. Evolution Equations and Control Theory, 2012, 1 (1) : 171-194. doi: 10.3934/eect.2012.1.171

[17]

Dongfen Bian, Yao Xiao. Global well-posedness of non-isothermal inhomogeneous nematic liquid crystal flows. Discrete and Continuous Dynamical Systems - B, 2021, 26 (3) : 1243-1272. doi: 10.3934/dcdsb.2020161

[18]

Shengquan Liu, Jianwen Zhang. Global well-posedness for the two-dimensional equations of nonhomogeneous incompressible liquid crystal flows with nonnegative density. Discrete and Continuous Dynamical Systems - B, 2016, 21 (8) : 2631-2648. doi: 10.3934/dcdsb.2016065

[19]

Thomas Lorenz. Nonlocal hyperbolic population models structured by size and spatial position: Well-posedness. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 4547-4628. doi: 10.3934/dcdsb.2019156

[20]

Naoufel Ben Abdallah, Raymond El Hajj. Diffusion and guiding center approximation for particle transport in strong magnetic fields. Kinetic and Related Models, 2008, 1 (3) : 331-354. doi: 10.3934/krm.2008.1.331

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (81)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]