March  2016, 36(3): 1249-1269. doi: 10.3934/dcds.2016.36.1249

The $\beta$-transformation with a hole

1. 

School of Mathematics, University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom

Received  January 2015 Revised  May 2015 Published  August 2015

This paper extends those of Glendinning and Sidorov [3] and of Hare and Sidorov [6] from the case of the doubling map to the more general $\beta$-transformation. Let $\beta \in (1,2)$ and consider the $\beta$-transformation $T_\beta(x)=\beta x$ mod 1. Let $\mathcal{J}_\beta(a,b) := \{ x \in (0,1) : T_\beta^n(x) \notin (a,b) \text{ for all } n \geq 0 \}$. An integer $n$ is bad for $(a,b)$ if every periodic point of period $n$ for $T_\beta$ intersects $(a,b)$. Denote the set of all bad $n$ for $(a,b)$ by $B_\beta(a,b)$. In this paper we completely describe the following sets: \begin{align*} D_0(\beta) &= \{ (a,b) \in [0,1)^2 : \mathcal{J}(a,b) \neq \emptyset \}, \\ D_1(\beta) &= \{ (a,b) \in [0,1)^2 : \mathcal{J}(a,b) \text{ is uncountable} \}, \\ D_2(\beta) &= \{ (a,b) \in [0,1)^2 : B_\beta(a,b) \text{ is finite} \}. \end{align*}
Citation: Lyndsey Clark. The $\beta$-transformation with a hole. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1249-1269. doi: 10.3934/dcds.2016.36.1249
References:
[1]

P. Boyland, A. de Carvalho and T. Hall, On digit frequencies in $\beta$-expansions,, Transactions of the AMS, ().   Google Scholar

[2]

S. Bullett and P. Sentenac, Ordered orbits of the shift, square roots, and the devil's staircase,, Math. Proc. Camb. Phil. Soc., 115 (1994), 451.  doi: 10.1017/S0305004100072236.  Google Scholar

[3]

P. Glendinning and N. Sidorov, The doubling map with asymmetrical holes,, Ergodic Theory and Dynamical Systems, 35 (2015), 1208.  doi: 10.1017/etds.2013.98.  Google Scholar

[4]

P. Glendinning and C. T. Sparrow, Prime and renormalisable kneading invariants and the dynamics of expanding Lorenz maps,, Physica D, 62 (1993), 22.  doi: 10.1016/0167-2789(93)90270-B.  Google Scholar

[5]

L. Goldberg and C. Tresser, Rotation and the Farey tree,, Ergodic Theory and Dynamical Systems, 16 (1996), 1011.  doi: 10.1017/S0143385700010154.  Google Scholar

[6]

K. G. Hare and N. Sidorov, On cycles for the doubling map which are disjoint from an interval,, Monatsh. Math., 175 (2014), 347.  doi: 10.1007/s00605-014-0646-y.  Google Scholar

[7]

J. H. Hubbard and C. T. Sparrow, The classification of topologically expansive Lorenz maps,, Comm. Pure Appl. Math., 43 (1990), 431.  doi: 10.1002/cpa.3160430402.  Google Scholar

[8]

M. Lothaire, Algebraic Combinatorics on Words,, Encyclopedia of Mathematics and its Applications, (2002).  doi: 10.1017/CBO9781107326019.  Google Scholar

[9]

W. Parry, On the $\beta$-expansions of real numbers,, Acta Math. Acad. Sci. Hung., 11 (1960), 401.  doi: 10.1007/BF02020954.  Google Scholar

[10]

A. Rényi, Representations for real numbers and their ergodic properties,, Acta Math. Acad. Sci. Hung., 8 (1957), 477.  doi: 10.1007/BF02020331.  Google Scholar

[11]

N. Sidorov, Supercritical holes for the doubling map,, Acta Mathematica Hungarica, 143 (2014), 298.  doi: 10.1007/s10474-014-0403-7.  Google Scholar

[12]

L. Vuillon, Balanced words,, Bull. Belg. Math. Soc. Simon Stevin, 10 (2003), 787.   Google Scholar

show all references

References:
[1]

P. Boyland, A. de Carvalho and T. Hall, On digit frequencies in $\beta$-expansions,, Transactions of the AMS, ().   Google Scholar

[2]

S. Bullett and P. Sentenac, Ordered orbits of the shift, square roots, and the devil's staircase,, Math. Proc. Camb. Phil. Soc., 115 (1994), 451.  doi: 10.1017/S0305004100072236.  Google Scholar

[3]

P. Glendinning and N. Sidorov, The doubling map with asymmetrical holes,, Ergodic Theory and Dynamical Systems, 35 (2015), 1208.  doi: 10.1017/etds.2013.98.  Google Scholar

[4]

P. Glendinning and C. T. Sparrow, Prime and renormalisable kneading invariants and the dynamics of expanding Lorenz maps,, Physica D, 62 (1993), 22.  doi: 10.1016/0167-2789(93)90270-B.  Google Scholar

[5]

L. Goldberg and C. Tresser, Rotation and the Farey tree,, Ergodic Theory and Dynamical Systems, 16 (1996), 1011.  doi: 10.1017/S0143385700010154.  Google Scholar

[6]

K. G. Hare and N. Sidorov, On cycles for the doubling map which are disjoint from an interval,, Monatsh. Math., 175 (2014), 347.  doi: 10.1007/s00605-014-0646-y.  Google Scholar

[7]

J. H. Hubbard and C. T. Sparrow, The classification of topologically expansive Lorenz maps,, Comm. Pure Appl. Math., 43 (1990), 431.  doi: 10.1002/cpa.3160430402.  Google Scholar

[8]

M. Lothaire, Algebraic Combinatorics on Words,, Encyclopedia of Mathematics and its Applications, (2002).  doi: 10.1017/CBO9781107326019.  Google Scholar

[9]

W. Parry, On the $\beta$-expansions of real numbers,, Acta Math. Acad. Sci. Hung., 11 (1960), 401.  doi: 10.1007/BF02020954.  Google Scholar

[10]

A. Rényi, Representations for real numbers and their ergodic properties,, Acta Math. Acad. Sci. Hung., 8 (1957), 477.  doi: 10.1007/BF02020331.  Google Scholar

[11]

N. Sidorov, Supercritical holes for the doubling map,, Acta Mathematica Hungarica, 143 (2014), 298.  doi: 10.1007/s10474-014-0403-7.  Google Scholar

[12]

L. Vuillon, Balanced words,, Bull. Belg. Math. Soc. Simon Stevin, 10 (2003), 787.   Google Scholar

[1]

Haiyu Liu, Rongmin Zhu, Yuxian Geng. Gorenstein global dimensions relative to balanced pairs. Electronic Research Archive, 2020, 28 (4) : 1563-1571. doi: 10.3934/era.2020082

[2]

Knut Hüper, Irina Markina, Fátima Silva Leite. A Lagrangian approach to extremal curves on Stiefel manifolds. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020031

[3]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[4]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[5]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[6]

Shao-Xia Qiao, Li-Jun Du. Propagation dynamics of nonlocal dispersal equations with inhomogeneous bistable nonlinearity. Electronic Research Archive, , () : -. doi: 10.3934/era.2020116

[7]

Ebraheem O. Alzahrani, Muhammad Altaf Khan. Androgen driven evolutionary population dynamics in prostate cancer growth. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020426

[8]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[9]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[10]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[11]

Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020375

[12]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[13]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[14]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[15]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[16]

Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121

[17]

Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020379

[18]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[19]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

[20]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (40)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]