\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

The $\beta$-transformation with a hole

Abstract Related Papers Cited by
  • This paper extends those of Glendinning and Sidorov [3] and of Hare and Sidorov [6] from the case of the doubling map to the more general $\beta$-transformation. Let $\beta \in (1,2)$ and consider the $\beta$-transformation $T_\beta(x)=\beta x$ mod 1. Let $\mathcal{J}_\beta(a,b) := \{ x \in (0,1) : T_\beta^n(x) \notin (a,b) \text{ for all } n \geq 0 \}$. An integer $n$ is bad for $(a,b)$ if every periodic point of period $n$ for $T_\beta$ intersects $(a,b)$. Denote the set of all bad $n$ for $(a,b)$ by $B_\beta(a,b)$. In this paper we completely describe the following sets: \begin{align*} D_0(\beta) &= \{ (a,b) \in [0,1)^2 : \mathcal{J}(a,b) \neq \emptyset \}, \\ D_1(\beta) &= \{ (a,b) \in [0,1)^2 : \mathcal{J}(a,b) \text{ is uncountable} \}, \\ D_2(\beta) &= \{ (a,b) \in [0,1)^2 : B_\beta(a,b) \text{ is finite} \}. \end{align*}
    Mathematics Subject Classification: Primary: 28D05; Secondary: 37B10, 68R15.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    P. Boyland, A. de Carvalho and T. Hall, On digit frequencies in $\beta$-expansions, Transactions of the AMS, to appear, arXiv:1308.4437.

    [2]

    S. Bullett and P. Sentenac, Ordered orbits of the shift, square roots, and the devil's staircase, Math. Proc. Camb. Phil. Soc., 115 (1994), 451-481.doi: 10.1017/S0305004100072236.

    [3]

    P. Glendinning and N. Sidorov, The doubling map with asymmetrical holes, Ergodic Theory and Dynamical Systems, 35 (2015), 1208-1228.doi: 10.1017/etds.2013.98.

    [4]

    P. Glendinning and C. T. Sparrow, Prime and renormalisable kneading invariants and the dynamics of expanding Lorenz maps, Physica D, 62 (1993), 22-50.doi: 10.1016/0167-2789(93)90270-B.

    [5]

    L. Goldberg and C. Tresser, Rotation and the Farey tree, Ergodic Theory and Dynamical Systems, 16 (1996), 1011-1029.doi: 10.1017/S0143385700010154.

    [6]

    K. G. Hare and N. Sidorov, On cycles for the doubling map which are disjoint from an interval, Monatsh. Math., 175 (2014), 347-365.doi: 10.1007/s00605-014-0646-y.

    [7]

    J. H. Hubbard and C. T. Sparrow, The classification of topologically expansive Lorenz maps, Comm. Pure Appl. Math., 43 (1990), 431-443.doi: 10.1002/cpa.3160430402.

    [8]

    M. Lothaire, Algebraic Combinatorics on Words, Encyclopedia of Mathematics and its Applications, 90, Cambridge University Press, 2002.doi: 10.1017/CBO9781107326019.

    [9]

    W. Parry, On the $\beta$-expansions of real numbers, Acta Math. Acad. Sci. Hung., 11 (1960), 401-416.doi: 10.1007/BF02020954.

    [10]

    A. Rényi, Representations for real numbers and their ergodic properties, Acta Math. Acad. Sci. Hung., 8 (1957), 477-493.doi: 10.1007/BF02020331.

    [11]

    N. Sidorov, Supercritical holes for the doubling map, Acta Mathematica Hungarica, 143 (2014), 298-312.doi: 10.1007/s10474-014-0403-7.

    [12]

    L. Vuillon, Balanced words, Bull. Belg. Math. Soc. Simon Stevin, 10 (2003), 787-805.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(98) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return