\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Rigidity of Hamenstädt metrics of Anosov flows

Abstract Related Papers Cited by
  • Let $\varphi$ be a $C^\infty$ transversely symplectic topologically mixing Anosov flow such that $dim E^{su}\geq 2$. We suppose that the weak distributions of $\varphi$ are $C^1$. If the length Hamenstädt metrics of $\varphi$ are sub-Riemannian then we prove that the weak distributions of $\varphi$ are necessarily $C^\infty$. Combined with our previous rigidity result in [5] we deduce the classification of such Anosov flows with $C^1$ weak distributions provided that the length Hamenstädt metrics are sub-Riemannian.
    Mathematics Subject Classification: Primary: 37A35, 34D20; Secondary: 37D35, 37D40.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    D. V. Anosov, Geodesic flows on closed Riemannian manifolds with negative curvature, Proc. Inst. Steklov, 90 (1967), 209pp.

    [2]

    G. Besson, G. Courtois and S. Gallot, Entropies et rigidités des espaces localement symétriques de courbure strictement négative, GAFA, 5 (1995), 731-800.doi: 10.1007/BF01897050.

    [3]

    M. G. Cowling and A. Ottazzi, Conformal maps of Carnot groups, to appear in Ann. Acad. Sci. Fenn. Math., arXiv:1312.6423. doi: 10.5186/aasfm.2015.4008.

    [4]

    P. Eberlein, U. Hamenstädt and V. Schroeder, Manifolds of nonpositive curvature, in Differential Geometry: Riemannian Geometry (Los Angeles CA, 1990), Proc. Sympos. Pure Math., 54, Part 3, Amer. Math. Soc., Providence, RI, 1993, 179-227.

    [5]

    Y. Fang, A dynamical-geometric characterization of the geodesic flows of negatively curved locally symmetric spaces, to appear in Ergodic Theory and Dynamical Systems. doi: 10.1017/S0143385711000010.

    [6]

    Y. Fang, Smooth rigidity of uniformly quasiconformal Anosov flows, Ergod. Th. and Dynam. Sys., 24 (2004), 1937-1959.doi: 10.1017/S0143385704000264.

    [7]

    Y. Fang, Quasiconformal Anosov flows and quasisymmetric rigidity of Hamenstädt distances, Discrete and Continuous Dynamical Systems, 34 (2014), 3471-3483.doi: 10.3934/dcds.2014.34.3471.

    [8]

    M. Gromov, J. Lafontaine and P. Pansu, Structures Métriques Pour Les Variétés Riemanniennes, Cedic-Fernand Nathan, Paris, 1981.

    [9]

    M. Guysinsky, The theory of non-stationary normal forms, Ergod. Theory and Dyn. Syst., 22 (2002), 845-862.doi: 10.1017/S0143385702000421.

    [10]

    M. Guysinsky and A. Katok, Normal forms and invariant geometric structures for dynamical systems with invariant contracting foliations, Math. Research Letters, 5 (1998), 149-163.doi: 10.4310/MRL.1998.v5.n2.a2.

    [11]

    U. Hamenstädt, A new description of the Bowen-Margulis measure, Ergod. Th. and Dynam. Sys., 9 (1989), 455-464.doi: 10.1017/S0143385700005095.

    [12]

    U. Hamenstädt, Some regularity theorems for Carnot-Carathéodory metrics, J. Differential Geometry, 32 (1990), 819-850.

    [13]

    U. Hamenstädt, Entropy-rigidity of locally symmetric spaces of negative curvature, Annals of Mathematics, 131 (1990), 35-51.doi: 10.2307/1971507.

    [14]

    B. Hasselblatt, A new construction of the Margulis measure for Anosov flows, Ergod. Th. and Dynam. Sys., 9 (1989), 465-468.doi: 10.1017/S0143385700005101.

    [15]

    B. Hasselblatt and A. Katok, Introduction to the Modern Theory of Dynamical Systems, Encyclopedia of Mathematics and its Applications, 54, Cambridge University Press, Cambridge, 1995.doi: 10.1017/CBO9780511809187.

    [16]

    J. L. Journée, A regularity lemma for functions of several variables, Revista Mate-mática Iberoamericana, 19 (1988), 187-193.doi: 10.4171/RMI/69.

    [17]

    A. Katok, Entropy and closed geodesics, Ergod. Th. and Dynam. Sys., 2 (1982), 339-365.doi: 10.1017/S0143385700001656.

    [18]

    J. Mitchell, On Carnot-Carathéodory metrics, J. Differential Geometry, 21 (1985), 35-45.

    [19]

    G. A. Margulis and G. D. Mostow, The differential of a quasi-conformal mapping of a Carnot-Caratheodory space, GAFA, 5 (1995), 402-433.doi: 10.1007/BF01895673.

    [20]

    J. F. Plante, Anosov flows, Amer. J. Math., 94 (1972), 729-754.doi: 10.2307/2373755.

    [21]

    V. Sadovskaya, On uniformly quasiconformal Anosov flows, Math. Res. Lett., 12 (2005), 425-441.doi: 10.4310/MRL.2005.v12.n3.a12.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(145) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return