Citation: |
[1] |
D. V. Anosov, Geodesic flows on closed Riemannian manifolds with negative curvature, Proc. Inst. Steklov, 90 (1967), 209pp. |
[2] |
G. Besson, G. Courtois and S. Gallot, Entropies et rigidités des espaces localement symétriques de courbure strictement négative, GAFA, 5 (1995), 731-800.doi: 10.1007/BF01897050. |
[3] |
M. G. Cowling and A. Ottazzi, Conformal maps of Carnot groups, to appear in Ann. Acad. Sci. Fenn. Math., arXiv:1312.6423. doi: 10.5186/aasfm.2015.4008. |
[4] |
P. Eberlein, U. Hamenstädt and V. Schroeder, Manifolds of nonpositive curvature, in Differential Geometry: Riemannian Geometry (Los Angeles CA, 1990), Proc. Sympos. Pure Math., 54, Part 3, Amer. Math. Soc., Providence, RI, 1993, 179-227. |
[5] |
Y. Fang, A dynamical-geometric characterization of the geodesic flows of negatively curved locally symmetric spaces, to appear in Ergodic Theory and Dynamical Systems. doi: 10.1017/S0143385711000010. |
[6] |
Y. Fang, Smooth rigidity of uniformly quasiconformal Anosov flows, Ergod. Th. and Dynam. Sys., 24 (2004), 1937-1959.doi: 10.1017/S0143385704000264. |
[7] |
Y. Fang, Quasiconformal Anosov flows and quasisymmetric rigidity of Hamenstädt distances, Discrete and Continuous Dynamical Systems, 34 (2014), 3471-3483.doi: 10.3934/dcds.2014.34.3471. |
[8] |
M. Gromov, J. Lafontaine and P. Pansu, Structures Métriques Pour Les Variétés Riemanniennes, Cedic-Fernand Nathan, Paris, 1981. |
[9] |
M. Guysinsky, The theory of non-stationary normal forms, Ergod. Theory and Dyn. Syst., 22 (2002), 845-862.doi: 10.1017/S0143385702000421. |
[10] |
M. Guysinsky and A. Katok, Normal forms and invariant geometric structures for dynamical systems with invariant contracting foliations, Math. Research Letters, 5 (1998), 149-163.doi: 10.4310/MRL.1998.v5.n2.a2. |
[11] |
U. Hamenstädt, A new description of the Bowen-Margulis measure, Ergod. Th. and Dynam. Sys., 9 (1989), 455-464.doi: 10.1017/S0143385700005095. |
[12] |
U. Hamenstädt, Some regularity theorems for Carnot-Carathéodory metrics, J. Differential Geometry, 32 (1990), 819-850. |
[13] |
U. Hamenstädt, Entropy-rigidity of locally symmetric spaces of negative curvature, Annals of Mathematics, 131 (1990), 35-51.doi: 10.2307/1971507. |
[14] |
B. Hasselblatt, A new construction of the Margulis measure for Anosov flows, Ergod. Th. and Dynam. Sys., 9 (1989), 465-468.doi: 10.1017/S0143385700005101. |
[15] |
B. Hasselblatt and A. Katok, Introduction to the Modern Theory of Dynamical Systems, Encyclopedia of Mathematics and its Applications, 54, Cambridge University Press, Cambridge, 1995.doi: 10.1017/CBO9780511809187. |
[16] |
J. L. Journée, A regularity lemma for functions of several variables, Revista Mate-mática Iberoamericana, 19 (1988), 187-193.doi: 10.4171/RMI/69. |
[17] |
A. Katok, Entropy and closed geodesics, Ergod. Th. and Dynam. Sys., 2 (1982), 339-365.doi: 10.1017/S0143385700001656. |
[18] |
J. Mitchell, On Carnot-Carathéodory metrics, J. Differential Geometry, 21 (1985), 35-45. |
[19] |
G. A. Margulis and G. D. Mostow, The differential of a quasi-conformal mapping of a Carnot-Caratheodory space, GAFA, 5 (1995), 402-433.doi: 10.1007/BF01895673. |
[20] |
J. F. Plante, Anosov flows, Amer. J. Math., 94 (1972), 729-754.doi: 10.2307/2373755. |
[21] |
V. Sadovskaya, On uniformly quasiconformal Anosov flows, Math. Res. Lett., 12 (2005), 425-441.doi: 10.4310/MRL.2005.v12.n3.a12. |