Advanced Search
Article Contents
Article Contents

Rigidity of Hamenstädt metrics of Anosov flows

Abstract Related Papers Cited by
  • Let $\varphi$ be a $C^\infty$ transversely symplectic topologically mixing Anosov flow such that $dim E^{su}\geq 2$. We suppose that the weak distributions of $\varphi$ are $C^1$. If the length Hamenstädt metrics of $\varphi$ are sub-Riemannian then we prove that the weak distributions of $\varphi$ are necessarily $C^\infty$. Combined with our previous rigidity result in [5] we deduce the classification of such Anosov flows with $C^1$ weak distributions provided that the length Hamenstädt metrics are sub-Riemannian.
    Mathematics Subject Classification: Primary: 37A35, 34D20; Secondary: 37D35, 37D40.


    \begin{equation} \\ \end{equation}
  • [1]

    D. V. Anosov, Geodesic flows on closed Riemannian manifolds with negative curvature, Proc. Inst. Steklov, 90 (1967), 209pp.


    G. Besson, G. Courtois and S. Gallot, Entropies et rigidités des espaces localement symétriques de courbure strictement négative, GAFA, 5 (1995), 731-800.doi: 10.1007/BF01897050.


    M. G. Cowling and A. Ottazzi, Conformal maps of Carnot groups, to appear in Ann. Acad. Sci. Fenn. Math., arXiv:1312.6423. doi: 10.5186/aasfm.2015.4008.


    P. Eberlein, U. Hamenstädt and V. Schroeder, Manifolds of nonpositive curvature, in Differential Geometry: Riemannian Geometry (Los Angeles CA, 1990), Proc. Sympos. Pure Math., 54, Part 3, Amer. Math. Soc., Providence, RI, 1993, 179-227.


    Y. Fang, A dynamical-geometric characterization of the geodesic flows of negatively curved locally symmetric spaces, to appear in Ergodic Theory and Dynamical Systems. doi: 10.1017/S0143385711000010.


    Y. Fang, Smooth rigidity of uniformly quasiconformal Anosov flows, Ergod. Th. and Dynam. Sys., 24 (2004), 1937-1959.doi: 10.1017/S0143385704000264.


    Y. Fang, Quasiconformal Anosov flows and quasisymmetric rigidity of Hamenstädt distances, Discrete and Continuous Dynamical Systems, 34 (2014), 3471-3483.doi: 10.3934/dcds.2014.34.3471.


    M. Gromov, J. Lafontaine and P. Pansu, Structures Métriques Pour Les Variétés Riemanniennes, Cedic-Fernand Nathan, Paris, 1981.


    M. Guysinsky, The theory of non-stationary normal forms, Ergod. Theory and Dyn. Syst., 22 (2002), 845-862.doi: 10.1017/S0143385702000421.


    M. Guysinsky and A. Katok, Normal forms and invariant geometric structures for dynamical systems with invariant contracting foliations, Math. Research Letters, 5 (1998), 149-163.doi: 10.4310/MRL.1998.v5.n2.a2.


    U. Hamenstädt, A new description of the Bowen-Margulis measure, Ergod. Th. and Dynam. Sys., 9 (1989), 455-464.doi: 10.1017/S0143385700005095.


    U. Hamenstädt, Some regularity theorems for Carnot-Carathéodory metrics, J. Differential Geometry, 32 (1990), 819-850.


    U. Hamenstädt, Entropy-rigidity of locally symmetric spaces of negative curvature, Annals of Mathematics, 131 (1990), 35-51.doi: 10.2307/1971507.


    B. Hasselblatt, A new construction of the Margulis measure for Anosov flows, Ergod. Th. and Dynam. Sys., 9 (1989), 465-468.doi: 10.1017/S0143385700005101.


    B. Hasselblatt and A. Katok, Introduction to the Modern Theory of Dynamical Systems, Encyclopedia of Mathematics and its Applications, 54, Cambridge University Press, Cambridge, 1995.doi: 10.1017/CBO9780511809187.


    J. L. Journée, A regularity lemma for functions of several variables, Revista Mate-mática Iberoamericana, 19 (1988), 187-193.doi: 10.4171/RMI/69.


    A. Katok, Entropy and closed geodesics, Ergod. Th. and Dynam. Sys., 2 (1982), 339-365.doi: 10.1017/S0143385700001656.


    J. Mitchell, On Carnot-Carathéodory metrics, J. Differential Geometry, 21 (1985), 35-45.


    G. A. Margulis and G. D. Mostow, The differential of a quasi-conformal mapping of a Carnot-Caratheodory space, GAFA, 5 (1995), 402-433.doi: 10.1007/BF01895673.


    J. F. Plante, Anosov flows, Amer. J. Math., 94 (1972), 729-754.doi: 10.2307/2373755.


    V. Sadovskaya, On uniformly quasiconformal Anosov flows, Math. Res. Lett., 12 (2005), 425-441.doi: 10.4310/MRL.2005.v12.n3.a12.

  • 加载中

Article Metrics

HTML views() PDF downloads(145) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint