-
Previous Article
Asymptotic stability of non-monotone traveling waves for time-delayed nonlocal dispersion equations
- DCDS Home
- This Issue
-
Next Article
Reaction-diffusion equations with fractional diffusion on non-smooth domains with various boundary conditions
Wandering continua for rational maps
1. | Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190 |
2. | Mathemaitcal School of Sichuan University, ChengDu, 610065, China |
References:
[1] |
A. Blokh and G. Levin, An inequality for laminations, Julia sets and 'growing trees', Erg. Th. and Dyn. Sys., 22 (2002), 63-97.
doi: 10.1017/S0143385702000032. |
[2] |
B. Branner and J. Hubbard, The iteration of cubic polynomials. Part II. Patterns and parapatterns, Acta Mathematica, 169 (1992), 229-325.
doi: 10.1007/BF02392761. |
[3] |
G. Cui, W. Peng and L. Tan, Renormalization and wandering curves of rational maps, preprint, arXiv:1403.5024. |
[4] |
G. Cui and L. Tan, A characterization of hyperbolic rational maps, Invent. Math., 183 (2011), 451-516.
doi: 10.1007/s00222-010-0281-8. |
[5] |
A. Douady and J. Hubbard, A proof of Thurston's topological characterization of rational functions, Acta Math., 171 (1993), 263-297.
doi: 10.1007/BF02392534. |
[6] |
J. Kiwi, Rational rays and critical portraits of complex polynomials, preprint, 1997/15, SUNY at Stony Brook and IMS. |
[7] |
J. Kiwi, Real laminations and the topological dynamics of complex polynomials, Adv. in Math., 184 (2004), 207-267.
doi: 10.1016/S0001-8708(03)00144-0. |
[8] |
O. Kozlovski and S. van Strien, Local connectivity and quasi-conformal rigidity of non-renormalizable polynomials, Proc. London Math. Soc., 99 (2009), 275-296.
doi: 10.1112/plms/pdn055. |
[9] |
G. Levin, On backward stability of holomorphic dynamical systems, Fund. Math., 158 (1998), 97-107. |
[10] |
C. McMullen, Complex Dynamics and Renormalization, Annals of Mathematics Studies, 135, Princeton University Press, 1994. |
[11] |
C. McMullen, Automorphisms of rational maps, in Holomorphic Function and Moduli, Vol. I (Berkeley, CA, 1986), Math. Sci. Res. Inst. Publ., 10, Springer, New York, 1988, 31-60.
doi: 10.1007/978-1-4613-9602-4_3. |
[12] |
J. Milnor, Dynamics in One Complex Variable, Princeton University Press, 2006. |
[13] |
J. Milnor, On Lattès Maps, in Dynamics on the Riemann Spheres, A Bodil Branner festschrift (eds. P. G. Hjorth and C. L. Petersen), European Mathematical Society, 2006, 9-43.
doi: 10.4171/011-1/1. |
[14] |
K. Pilgrim and L. Tan, Rational maps with disconnected Julia set, Asterisque, 261 (2000), 349-384. |
[15] |
W. Qiu and Y. Yin, Proof of the Branner-Hubbard conjecture on Cantor Julia sets, Science in China Series A, 52 (2009), 45-65.
doi: 10.1007/s11425-008-0178-9. |
[16] |
W. Thurston, The combinatorics of iterated rational maps, in Complex Dynamics: Families and Friends (ed. D. Schleicher), A K Peters/CRC Press, 2009, 3-130.
doi: 10.1201/b10617-3. |
show all references
References:
[1] |
A. Blokh and G. Levin, An inequality for laminations, Julia sets and 'growing trees', Erg. Th. and Dyn. Sys., 22 (2002), 63-97.
doi: 10.1017/S0143385702000032. |
[2] |
B. Branner and J. Hubbard, The iteration of cubic polynomials. Part II. Patterns and parapatterns, Acta Mathematica, 169 (1992), 229-325.
doi: 10.1007/BF02392761. |
[3] |
G. Cui, W. Peng and L. Tan, Renormalization and wandering curves of rational maps, preprint, arXiv:1403.5024. |
[4] |
G. Cui and L. Tan, A characterization of hyperbolic rational maps, Invent. Math., 183 (2011), 451-516.
doi: 10.1007/s00222-010-0281-8. |
[5] |
A. Douady and J. Hubbard, A proof of Thurston's topological characterization of rational functions, Acta Math., 171 (1993), 263-297.
doi: 10.1007/BF02392534. |
[6] |
J. Kiwi, Rational rays and critical portraits of complex polynomials, preprint, 1997/15, SUNY at Stony Brook and IMS. |
[7] |
J. Kiwi, Real laminations and the topological dynamics of complex polynomials, Adv. in Math., 184 (2004), 207-267.
doi: 10.1016/S0001-8708(03)00144-0. |
[8] |
O. Kozlovski and S. van Strien, Local connectivity and quasi-conformal rigidity of non-renormalizable polynomials, Proc. London Math. Soc., 99 (2009), 275-296.
doi: 10.1112/plms/pdn055. |
[9] |
G. Levin, On backward stability of holomorphic dynamical systems, Fund. Math., 158 (1998), 97-107. |
[10] |
C. McMullen, Complex Dynamics and Renormalization, Annals of Mathematics Studies, 135, Princeton University Press, 1994. |
[11] |
C. McMullen, Automorphisms of rational maps, in Holomorphic Function and Moduli, Vol. I (Berkeley, CA, 1986), Math. Sci. Res. Inst. Publ., 10, Springer, New York, 1988, 31-60.
doi: 10.1007/978-1-4613-9602-4_3. |
[12] |
J. Milnor, Dynamics in One Complex Variable, Princeton University Press, 2006. |
[13] |
J. Milnor, On Lattès Maps, in Dynamics on the Riemann Spheres, A Bodil Branner festschrift (eds. P. G. Hjorth and C. L. Petersen), European Mathematical Society, 2006, 9-43.
doi: 10.4171/011-1/1. |
[14] |
K. Pilgrim and L. Tan, Rational maps with disconnected Julia set, Asterisque, 261 (2000), 349-384. |
[15] |
W. Qiu and Y. Yin, Proof of the Branner-Hubbard conjecture on Cantor Julia sets, Science in China Series A, 52 (2009), 45-65.
doi: 10.1007/s11425-008-0178-9. |
[16] |
W. Thurston, The combinatorics of iterated rational maps, in Complex Dynamics: Families and Friends (ed. D. Schleicher), A K Peters/CRC Press, 2009, 3-130.
doi: 10.1201/b10617-3. |
[1] |
Yu-Hao Liang, Wan-Rou Wu, Jonq Juang. Fastest synchronized network and synchrony on the Julia set of complex-valued coupled map lattices. Discrete and Continuous Dynamical Systems - B, 2016, 21 (1) : 173-184. doi: 10.3934/dcdsb.2016.21.173 |
[2] |
James W. Cannon, Mark H. Meilstrup, Andreas Zastrow. The period set of a map from the Cantor set to itself. Discrete and Continuous Dynamical Systems, 2013, 33 (7) : 2667-2679. doi: 10.3934/dcds.2013.33.2667 |
[3] |
Guizhen Cui, Wenjuan Peng, Lei Tan. On the topology of wandering Julia components. Discrete and Continuous Dynamical Systems, 2011, 29 (3) : 929-952. doi: 10.3934/dcds.2011.29.929 |
[4] |
Rich Stankewitz. Density of repelling fixed points in the Julia set of a rational or entire semigroup, II. Discrete and Continuous Dynamical Systems, 2012, 32 (7) : 2583-2589. doi: 10.3934/dcds.2012.32.2583 |
[5] |
Hsuan-Wen Su. Finding invariant tori with Poincare's map. Communications on Pure and Applied Analysis, 2008, 7 (2) : 433-443. doi: 10.3934/cpaa.2008.7.433 |
[6] |
Amadeu Delshams, Josep J. Masdemont, Pablo Roldán. Computing the scattering map in the spatial Hill's problem. Discrete and Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 455-483. doi: 10.3934/dcdsb.2008.10.455 |
[7] |
C. R. Chen, S. J. Li. Semicontinuity of the solution set map to a set-valued weak vector variational inequality. Journal of Industrial and Management Optimization, 2007, 3 (3) : 519-528. doi: 10.3934/jimo.2007.3.519 |
[8] |
Sébastien Biebler. Lattès maps and the interior of the bifurcation locus. Journal of Modern Dynamics, 2019, 15: 95-130. doi: 10.3934/jmd.2019014 |
[9] |
François Berteloot, Tien-Cuong Dinh. The Mandelbrot set is the shadow of a Julia set. Discrete and Continuous Dynamical Systems, 2020, 40 (12) : 6611-6633. doi: 10.3934/dcds.2020262 |
[10] |
Luke G. Rogers, Alexander Teplyaev. Laplacians on the basilica Julia set. Communications on Pure and Applied Analysis, 2010, 9 (1) : 211-231. doi: 10.3934/cpaa.2010.9.211 |
[11] |
Daniel Fusca. The Madelung transform as a momentum map. Journal of Geometric Mechanics, 2017, 9 (2) : 157-165. doi: 10.3934/jgm.2017006 |
[12] |
Lluís Alsedà, Michał Misiurewicz. Semiconjugacy to a map of a constant slope. Discrete and Continuous Dynamical Systems - B, 2015, 20 (10) : 3403-3413. doi: 10.3934/dcdsb.2015.20.3403 |
[13] |
Richard Evan Schwartz. Outer billiards and the pinwheel map. Journal of Modern Dynamics, 2011, 5 (2) : 255-283. doi: 10.3934/jmd.2011.5.255 |
[14] |
Valentin Ovsienko, Richard Schwartz, Serge Tabachnikov. Quasiperiodic motion for the pentagram map. Electronic Research Announcements, 2009, 16: 1-8. doi: 10.3934/era.2009.16.1 |
[15] |
John Erik Fornæss, Brendan Weickert. A quantized henon map. Discrete and Continuous Dynamical Systems, 2000, 6 (3) : 723-740. doi: 10.3934/dcds.2000.6.723 |
[16] |
Zenonas Navickas, Rasa Smidtaite, Alfonsas Vainoras, Minvydas Ragulskis. The logistic map of matrices. Discrete and Continuous Dynamical Systems - B, 2011, 16 (3) : 927-944. doi: 10.3934/dcdsb.2011.16.927 |
[17] |
Roberto De Leo, James A. Yorke. The graph of the logistic map is a tower. Discrete and Continuous Dynamical Systems, 2021, 41 (11) : 5243-5269. doi: 10.3934/dcds.2021075 |
[18] |
Paul Wright. Differentiability of Hausdorff dimension of the non-wandering set in a planar open billiard. Discrete and Continuous Dynamical Systems, 2016, 36 (7) : 3993-4014. doi: 10.3934/dcds.2016.36.3993 |
[19] |
Jian Zhai, Jianping Fang, Lanjun Li. Wave map with potential and hypersurface flow. Conference Publications, 2005, 2005 (Special) : 940-946. doi: 10.3934/proc.2005.2005.940 |
[20] |
Mila Nikolova. Model distortions in Bayesian MAP reconstruction. Inverse Problems and Imaging, 2007, 1 (2) : 399-422. doi: 10.3934/ipi.2007.1.399 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]