\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Wandering continua for rational maps

Abstract Related Papers Cited by
  • We prove that a Lattès map admits an always full wandering continuum if and only if it is flexible. The full wandering continuum is a line segment in a bi-infinite or one-side-infinite geodesic under the flat metric.
    Mathematics Subject Classification: 37F10, 37F20.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    A. Blokh and G. Levin, An inequality for laminations, Julia sets and 'growing trees', Erg. Th. and Dyn. Sys., 22 (2002), 63-97.doi: 10.1017/S0143385702000032.

    [2]

    B. Branner and J. Hubbard, The iteration of cubic polynomials. Part II. Patterns and parapatterns, Acta Mathematica, 169 (1992), 229-325.doi: 10.1007/BF02392761.

    [3]

    G. Cui, W. Peng and L. Tan, Renormalization and wandering curves of rational maps, preprint, arXiv:1403.5024.

    [4]

    G. Cui and L. Tan, A characterization of hyperbolic rational maps, Invent. Math., 183 (2011), 451-516.doi: 10.1007/s00222-010-0281-8.

    [5]

    A. Douady and J. Hubbard, A proof of Thurston's topological characterization of rational functions, Acta Math., 171 (1993), 263-297.doi: 10.1007/BF02392534.

    [6]

    J. Kiwi, Rational rays and critical portraits of complex polynomials, preprint, 1997/15, SUNY at Stony Brook and IMS.

    [7]

    J. Kiwi, Real laminations and the topological dynamics of complex polynomials, Adv. in Math., 184 (2004), 207-267.doi: 10.1016/S0001-8708(03)00144-0.

    [8]

    O. Kozlovski and S. van Strien, Local connectivity and quasi-conformal rigidity of non-renormalizable polynomials, Proc. London Math. Soc., 99 (2009), 275-296.doi: 10.1112/plms/pdn055.

    [9]

    G. Levin, On backward stability of holomorphic dynamical systems, Fund. Math., 158 (1998), 97-107.

    [10]

    C. McMullen, Complex Dynamics and Renormalization, Annals of Mathematics Studies, 135, Princeton University Press, 1994.

    [11]

    C. McMullen, Automorphisms of rational maps, in Holomorphic Function and Moduli, Vol. I (Berkeley, CA, 1986), Math. Sci. Res. Inst. Publ., 10, Springer, New York, 1988, 31-60.doi: 10.1007/978-1-4613-9602-4_3.

    [12]

    J. Milnor, Dynamics in One Complex Variable, Princeton University Press, 2006.

    [13]

    J. Milnor, On Lattès Maps, in Dynamics on the Riemann Spheres, A Bodil Branner festschrift (eds. P. G. Hjorth and C. L. Petersen), European Mathematical Society, 2006, 9-43.doi: 10.4171/011-1/1.

    [14]

    K. Pilgrim and L. Tan, Rational maps with disconnected Julia set, Asterisque, 261 (2000), 349-384.

    [15]

    W. Qiu and Y. Yin, Proof of the Branner-Hubbard conjecture on Cantor Julia sets, Science in China Series A, 52 (2009), 45-65.doi: 10.1007/s11425-008-0178-9.

    [16]

    W. Thurston, The combinatorics of iterated rational maps, in Complex Dynamics: Families and Friends (ed. D. Schleicher), A K Peters/CRC Press, 2009, 3-130.doi: 10.1201/b10617-3.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(84) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return