March  2016, 36(3): 1331-1353. doi: 10.3934/dcds.2016.36.1331

Asymptotic stability of non-monotone traveling waves for time-delayed nonlocal dispersion equations

1. 

School of Mathematical Sciences, South China Normal University, Guangzhou, Guangdong, 510631

2. 

Department of Mathematics, Champlain College Saint-Lambert, Quebec, J4P 3P2

3. 

School of Mathematics and Statistics, Northeast Normal University, Changchun, MO 130024

4. 

School of Science, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China

Received  December 2014 Revised  March 2015 Published  August 2015

This paper is concerned with the stability of non-monotone traveling waves to a nonlocal dispersion equation with time-delay, a time-delayed integro-differential equation. When the equation is crossing-monostable, the equation and the traveling waves both loss their monotonicity, and the traveling waves are oscillating as the time-delay is big. In this paper, we prove that all non-critical traveling waves (the wave speed is greater than the minimum speed), including those oscillatory waves, are time-exponentially stable, when the initial perturbations around the waves are small. The adopted approach is still the technical weighted-energy method but with a new development. Numerical simulations in different cases are also carried out, which further confirm our theoretical result. Finally, as a corollary of our stability result, we immediately obtain the uniqueness of the traveling waves for the non-monotone integro-differential equation, which was open so far as we know.
Citation: Rui Huang, Ming Mei, Kaijun Zhang, Qifeng Zhang. Asymptotic stability of non-monotone traveling waves for time-delayed nonlocal dispersion equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1331-1353. doi: 10.3934/dcds.2016.36.1331
References:
[1]

M. Aguerra, C. Gomez and S. Trofimchuk, On uniqueness of semi-wavefronts,, Math. Ann., 354 (2012), 73. doi: 10.1007/s00208-011-0722-8. Google Scholar

[2]

F. Andreu-Vaillo, J. M. Mazon, J. D. Rossi and J. J. Toledo-Melero, Nonlocal Diffusion Problems,, Math. Surveys and Monographs, (2010). doi: 10.1090/surv/165. Google Scholar

[3]

E. Chasseigne, M. Chaves and J. Rossi, Asymptotic behavior for nonlocal diffusion equations,, J. Math. Pure Appl., 86 (2006), 271. doi: 10.1016/j.matpur.2006.04.005. Google Scholar

[4]

C. Cortazar, M. Elgueta, J. D. Rossi and N. Wolanski, How to approximate the heat equation with Neumann boundary conditions by nonlocal diffusion problems,, Arch. Rational Mech. Anal., 187 (2008), 137. doi: 10.1007/s00205-007-0062-8. Google Scholar

[5]

J. Coville, On uniqueness and monotonicity of solutions of non-local reaction-diffusion equation,, Annali. di Matematica Pura Appl., 185 (2006), 461. doi: 10.1007/s10231-005-0163-7. Google Scholar

[6]

J. Coville, J. Dávila and S. Martínez, Nonlocal anisotropic dispersal with monostable nonlinearity,, J. Differential Equations, 244 (2008), 3080. doi: 10.1016/j.jde.2007.11.002. Google Scholar

[7]

J. Coville and L. Dupaigne, On a non-local equation arising in population dynamics,, Proc. Roy. Soc. Edinburgh Sect. A, 137 (2007), 727. doi: 10.1017/S0308210504000721. Google Scholar

[8]

J. Coville and L. Dupaigne, Propagation speed of travelling fronts in non local reaction-diffusion equations,, Nonlinear Anal., 60 (2005), 797. doi: 10.1016/j.na.2003.10.030. Google Scholar

[9]

J. Fang and X.-Q. Zhao, Existence and uniqueness of traveling waves for non-monotone integral equations with applications,, J. Differential Equations, 248 (2010), 2199. doi: 10.1016/j.jde.2010.01.009. Google Scholar

[10]

P. C. Fife, Mathematical Aspects of Reacting and Diffusing Systems,, Lecture Notes in Biomathematics, 28 (1979). Google Scholar

[11]

W. S. C. Gurney, S. P. Blythe and R. M. Nisbet, Nicholson's blowflies revisited,, Nature, 287 (1980), 17. doi: 10.1038/287017a0. Google Scholar

[12]

A. Gomez and S. Trofimchuk, Global continuation of monotone wavefronts,, J. London Math. Soc., 89 (2014), 47. doi: 10.1112/jlms/jdt050. Google Scholar

[13]

S. A. Gourley, J. W.-H. So and J. Wu, Nonlocalily of reaction-diffusion equations induced by delay: Biological modeling and nonlinear dynamics,, (Russian) Sovrem. Mat. Fundam. Napravl., 1 (2003), 84. doi: 10.1023/B:JOTH.0000047249.39572.6d. Google Scholar

[14]

S. A. Gourley and J. Wu, Delayed non-local diffusive systems in biological invasion and disease spread,, in Nonlinear Dynamics and Evolution Equations (eds. H. Brunner, (2006), 137. Google Scholar

[15]

R. Huang, M. Mei and Y. Wang, Planar traveling waves for nonlocal dispersion equation with monostable nonlinearity,, Discret. Contin. Dyn. Syst. A, 32 (2012), 3621. doi: 10.3934/dcds.2012.32.3621. Google Scholar

[16]

L. Ignat and J. D. Rossi, Decay estimates for nonlocal problems via energy methods,, J. Math. Pure Appl.(9), 92 (2009), 163. doi: 10.1016/j.matpur.2009.04.009. Google Scholar

[17]

L. Ignat and J. D. Rossi, A nonlocal convolution-diffusion equation,, J. Func. Anal., 251 (2007), 399. doi: 10.1016/j.jfa.2007.07.013. Google Scholar

[18]

D. Liang and J. Wu, Travelling waves and numerical approximations in a reaction advection diffusion equation with nonlocal delayed effects,, J. Nonlinear Sci., 13 (2003), 289. doi: 10.1007/s00332-003-0524-6. Google Scholar

[19]

C.-K. Lin, C.-T. Lin, Y. P. Lin and M. Mei, Exponential stability of nonmonotone traveling waves for Nicholson's blowflies equation,, SIAM J. Math. Anal., 46 (2014), 1053. doi: 10.1137/120904391. Google Scholar

[20]

M. C. Mackey and L. Glass, Oscillation and chaos in physiological control systems,, Science, 197 (1977), 287. doi: 10.1126/science.267326. Google Scholar

[21]

A. Matsumura and M. Mei, Nonlinear stability of viscous shock profile for a non-convex system of viscoelasticity,, Osaka J. Math., 34 (1997), 589. Google Scholar

[22]

M. Mei, C.-K. Lin, C.-T. Lin and J. W.-H. So, Traveling wavefronts for time-delayed reaction-diffusion equation. I. Local nonlinearity,, J. Differential Equations, 247 (2009), 495. doi: 10.1016/j.jde.2008.12.026. Google Scholar

[23]

M. Mei, C.-K. Lin, C.-T. Lin and J. W.-H. So, Traveling wavefronts for time-delayed reaction-diffusion equation. II. Nonlocal nonlinearity,, J. Differential Equations, 247 (2009), 511. doi: 10.1016/j.jde.2008.12.020. Google Scholar

[24]

M. Mei, J. W.-H. So, M. Li and S. Shen, Asymptotic stability of travelling waves for Nicholson's blowflies equation with diffusion,, Proc. Roy. Soc. Edinburgh Sec. A, 134 (2004), 579. doi: 10.1017/S0308210500003358. Google Scholar

[25]

M. Mei and J. W.-H. So, Stability of strong travelling waves for a non-local time-delayed reaction-diffusion equation,, Proc. Roy. Soc. Edinburgh Sec. A, 138 (2008), 551. doi: 10.1017/S0308210506000333. Google Scholar

[26]

M. Mei, C. Ou and X.-Q. Zhao, Global stability of monostable traveling waves for nonlocal time-delayed reaction-diffusion equations,, SIAM J. Math. Anal., 42 (2010), 2762. doi: 10.1137/090776342. Google Scholar

[27]

M. Mei and Y. Wang, Remark on stability of traveling waves for nonlocal Fisher-KPP equations,, Int. J. Numer. Anal. Model. Seris B, 2 (2011), 379. Google Scholar

[28]

M. Mei and Y. S. Wong, Novel stability results for traveling wavefronts in an age-structured reaction-diffusion equations,, Math. Biosci. Engin., 6 (2009), 743. doi: 10.3934/mbe.2009.6.743. Google Scholar

[29]

J. A. J. Metz and O. Diekmann, The dynamics of Physiologically Structured Populations,, Springer, (1986). doi: 10.1007/978-3-662-13159-6. Google Scholar

[30]

H. J. K. Moet, A note on the asymptotic behavior of solutions of the KPP equation,, SIAM J. Math. Anal., 10 (1979), 728. doi: 10.1137/0510067. Google Scholar

[31]

S. Pan, W.-T. Li and G. Lin, Existence and stability of traveling wavefronts in a nonlocal diffusion equation with delay,, Nonlinear Anal., 72 (2010), 3150. doi: 10.1016/j.na.2009.12.008. Google Scholar

[32]

J. W.-H. So, J. Wu and X. Zou, A reaction-diffusion model for a single species with age structure: I. Traveling wavefronts on unbounded domains,, Roy. Soc. London Proc. Series A Math. Phys. Eng. Sci., 457 (2001), 1841. doi: 10.1098/rspa.2001.0789. Google Scholar

[33]

E. Trofimchuk and S. Trofimchunk, Admissible wavefront speeds for a single species reaction-diffusion equation with delay,, Discrete Contin. Dyn. Syst. A, 20 (2008), 407. doi: 10.3934/dcds.2008.20.407. Google Scholar

[34]

E. Trofimchuk, V. Tkachenko and S. Trofimchuk, Slowly oscillating wave solutions of a single species reaction-diffusion equation with delay,, J. Differential Equations, 245 (2008), 2307. doi: 10.1016/j.jde.2008.06.023. Google Scholar

[35]

S.-L. Wu, H.-Q. Zhao and S.-Y. Liu, Asymptotic stability of traveling waves for delayed reaction-diffusion equations with crossing-monostability,, Z. Angew. Math. Phys., 62 (2011), 377. doi: 10.1007/s00033-010-0112-1. Google Scholar

[36]

H. Yagisita, Existence and nonexistence of traveling waves for a nonlocal monostable equation,, Publ. Res. Inst. Math. Sci., 45 (2009), 925. doi: 10.2977/prims/1260476648. Google Scholar

[37]

G.-B. Zhang, Traveling waves in a nonlocal dispersal population model with age-structure,, Nonlinear Anal., 74 (2011), 5030. doi: 10.1016/j.na.2011.04.069. Google Scholar

[38]

G.-B. Zhang and R. Ma, Spreading speeds and traveling waves for a nonlocal dispersal equation with convolution-type crossing-monostable nonlinearity,, Z. Ang. Math. Phys., 64 (2013), 1643. doi: 10.1007/s00033-013-0353-x. Google Scholar

show all references

References:
[1]

M. Aguerra, C. Gomez and S. Trofimchuk, On uniqueness of semi-wavefronts,, Math. Ann., 354 (2012), 73. doi: 10.1007/s00208-011-0722-8. Google Scholar

[2]

F. Andreu-Vaillo, J. M. Mazon, J. D. Rossi and J. J. Toledo-Melero, Nonlocal Diffusion Problems,, Math. Surveys and Monographs, (2010). doi: 10.1090/surv/165. Google Scholar

[3]

E. Chasseigne, M. Chaves and J. Rossi, Asymptotic behavior for nonlocal diffusion equations,, J. Math. Pure Appl., 86 (2006), 271. doi: 10.1016/j.matpur.2006.04.005. Google Scholar

[4]

C. Cortazar, M. Elgueta, J. D. Rossi and N. Wolanski, How to approximate the heat equation with Neumann boundary conditions by nonlocal diffusion problems,, Arch. Rational Mech. Anal., 187 (2008), 137. doi: 10.1007/s00205-007-0062-8. Google Scholar

[5]

J. Coville, On uniqueness and monotonicity of solutions of non-local reaction-diffusion equation,, Annali. di Matematica Pura Appl., 185 (2006), 461. doi: 10.1007/s10231-005-0163-7. Google Scholar

[6]

J. Coville, J. Dávila and S. Martínez, Nonlocal anisotropic dispersal with monostable nonlinearity,, J. Differential Equations, 244 (2008), 3080. doi: 10.1016/j.jde.2007.11.002. Google Scholar

[7]

J. Coville and L. Dupaigne, On a non-local equation arising in population dynamics,, Proc. Roy. Soc. Edinburgh Sect. A, 137 (2007), 727. doi: 10.1017/S0308210504000721. Google Scholar

[8]

J. Coville and L. Dupaigne, Propagation speed of travelling fronts in non local reaction-diffusion equations,, Nonlinear Anal., 60 (2005), 797. doi: 10.1016/j.na.2003.10.030. Google Scholar

[9]

J. Fang and X.-Q. Zhao, Existence and uniqueness of traveling waves for non-monotone integral equations with applications,, J. Differential Equations, 248 (2010), 2199. doi: 10.1016/j.jde.2010.01.009. Google Scholar

[10]

P. C. Fife, Mathematical Aspects of Reacting and Diffusing Systems,, Lecture Notes in Biomathematics, 28 (1979). Google Scholar

[11]

W. S. C. Gurney, S. P. Blythe and R. M. Nisbet, Nicholson's blowflies revisited,, Nature, 287 (1980), 17. doi: 10.1038/287017a0. Google Scholar

[12]

A. Gomez and S. Trofimchuk, Global continuation of monotone wavefronts,, J. London Math. Soc., 89 (2014), 47. doi: 10.1112/jlms/jdt050. Google Scholar

[13]

S. A. Gourley, J. W.-H. So and J. Wu, Nonlocalily of reaction-diffusion equations induced by delay: Biological modeling and nonlinear dynamics,, (Russian) Sovrem. Mat. Fundam. Napravl., 1 (2003), 84. doi: 10.1023/B:JOTH.0000047249.39572.6d. Google Scholar

[14]

S. A. Gourley and J. Wu, Delayed non-local diffusive systems in biological invasion and disease spread,, in Nonlinear Dynamics and Evolution Equations (eds. H. Brunner, (2006), 137. Google Scholar

[15]

R. Huang, M. Mei and Y. Wang, Planar traveling waves for nonlocal dispersion equation with monostable nonlinearity,, Discret. Contin. Dyn. Syst. A, 32 (2012), 3621. doi: 10.3934/dcds.2012.32.3621. Google Scholar

[16]

L. Ignat and J. D. Rossi, Decay estimates for nonlocal problems via energy methods,, J. Math. Pure Appl.(9), 92 (2009), 163. doi: 10.1016/j.matpur.2009.04.009. Google Scholar

[17]

L. Ignat and J. D. Rossi, A nonlocal convolution-diffusion equation,, J. Func. Anal., 251 (2007), 399. doi: 10.1016/j.jfa.2007.07.013. Google Scholar

[18]

D. Liang and J. Wu, Travelling waves and numerical approximations in a reaction advection diffusion equation with nonlocal delayed effects,, J. Nonlinear Sci., 13 (2003), 289. doi: 10.1007/s00332-003-0524-6. Google Scholar

[19]

C.-K. Lin, C.-T. Lin, Y. P. Lin and M. Mei, Exponential stability of nonmonotone traveling waves for Nicholson's blowflies equation,, SIAM J. Math. Anal., 46 (2014), 1053. doi: 10.1137/120904391. Google Scholar

[20]

M. C. Mackey and L. Glass, Oscillation and chaos in physiological control systems,, Science, 197 (1977), 287. doi: 10.1126/science.267326. Google Scholar

[21]

A. Matsumura and M. Mei, Nonlinear stability of viscous shock profile for a non-convex system of viscoelasticity,, Osaka J. Math., 34 (1997), 589. Google Scholar

[22]

M. Mei, C.-K. Lin, C.-T. Lin and J. W.-H. So, Traveling wavefronts for time-delayed reaction-diffusion equation. I. Local nonlinearity,, J. Differential Equations, 247 (2009), 495. doi: 10.1016/j.jde.2008.12.026. Google Scholar

[23]

M. Mei, C.-K. Lin, C.-T. Lin and J. W.-H. So, Traveling wavefronts for time-delayed reaction-diffusion equation. II. Nonlocal nonlinearity,, J. Differential Equations, 247 (2009), 511. doi: 10.1016/j.jde.2008.12.020. Google Scholar

[24]

M. Mei, J. W.-H. So, M. Li and S. Shen, Asymptotic stability of travelling waves for Nicholson's blowflies equation with diffusion,, Proc. Roy. Soc. Edinburgh Sec. A, 134 (2004), 579. doi: 10.1017/S0308210500003358. Google Scholar

[25]

M. Mei and J. W.-H. So, Stability of strong travelling waves for a non-local time-delayed reaction-diffusion equation,, Proc. Roy. Soc. Edinburgh Sec. A, 138 (2008), 551. doi: 10.1017/S0308210506000333. Google Scholar

[26]

M. Mei, C. Ou and X.-Q. Zhao, Global stability of monostable traveling waves for nonlocal time-delayed reaction-diffusion equations,, SIAM J. Math. Anal., 42 (2010), 2762. doi: 10.1137/090776342. Google Scholar

[27]

M. Mei and Y. Wang, Remark on stability of traveling waves for nonlocal Fisher-KPP equations,, Int. J. Numer. Anal. Model. Seris B, 2 (2011), 379. Google Scholar

[28]

M. Mei and Y. S. Wong, Novel stability results for traveling wavefronts in an age-structured reaction-diffusion equations,, Math. Biosci. Engin., 6 (2009), 743. doi: 10.3934/mbe.2009.6.743. Google Scholar

[29]

J. A. J. Metz and O. Diekmann, The dynamics of Physiologically Structured Populations,, Springer, (1986). doi: 10.1007/978-3-662-13159-6. Google Scholar

[30]

H. J. K. Moet, A note on the asymptotic behavior of solutions of the KPP equation,, SIAM J. Math. Anal., 10 (1979), 728. doi: 10.1137/0510067. Google Scholar

[31]

S. Pan, W.-T. Li and G. Lin, Existence and stability of traveling wavefronts in a nonlocal diffusion equation with delay,, Nonlinear Anal., 72 (2010), 3150. doi: 10.1016/j.na.2009.12.008. Google Scholar

[32]

J. W.-H. So, J. Wu and X. Zou, A reaction-diffusion model for a single species with age structure: I. Traveling wavefronts on unbounded domains,, Roy. Soc. London Proc. Series A Math. Phys. Eng. Sci., 457 (2001), 1841. doi: 10.1098/rspa.2001.0789. Google Scholar

[33]

E. Trofimchuk and S. Trofimchunk, Admissible wavefront speeds for a single species reaction-diffusion equation with delay,, Discrete Contin. Dyn. Syst. A, 20 (2008), 407. doi: 10.3934/dcds.2008.20.407. Google Scholar

[34]

E. Trofimchuk, V. Tkachenko and S. Trofimchuk, Slowly oscillating wave solutions of a single species reaction-diffusion equation with delay,, J. Differential Equations, 245 (2008), 2307. doi: 10.1016/j.jde.2008.06.023. Google Scholar

[35]

S.-L. Wu, H.-Q. Zhao and S.-Y. Liu, Asymptotic stability of traveling waves for delayed reaction-diffusion equations with crossing-monostability,, Z. Angew. Math. Phys., 62 (2011), 377. doi: 10.1007/s00033-010-0112-1. Google Scholar

[36]

H. Yagisita, Existence and nonexistence of traveling waves for a nonlocal monostable equation,, Publ. Res. Inst. Math. Sci., 45 (2009), 925. doi: 10.2977/prims/1260476648. Google Scholar

[37]

G.-B. Zhang, Traveling waves in a nonlocal dispersal population model with age-structure,, Nonlinear Anal., 74 (2011), 5030. doi: 10.1016/j.na.2011.04.069. Google Scholar

[38]

G.-B. Zhang and R. Ma, Spreading speeds and traveling waves for a nonlocal dispersal equation with convolution-type crossing-monostable nonlinearity,, Z. Ang. Math. Phys., 64 (2013), 1643. doi: 10.1007/s00033-013-0353-x. Google Scholar

[1]

Qinqin Chai, Ryan Loxton, Kok Lay Teo, Chunhua Yang. A unified parameter identification method for nonlinear time-delay systems. Journal of Industrial & Management Optimization, 2013, 9 (2) : 471-486. doi: 10.3934/jimo.2013.9.471

[2]

Nabil T. Fadai, Michael J. Ward, Juncheng Wei. A time-delay in the activator kinetics enhances the stability of a spike solution to the gierer-meinhardt model. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1431-1458. doi: 10.3934/dcdsb.2018158

[3]

Karel Hasik, Sergei Trofimchuk. Slowly oscillating wavefronts of the KPP-Fisher delayed equation. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3511-3533. doi: 10.3934/dcds.2014.34.3511

[4]

Michael Stich, Carsten Beta. Standing waves in a complex Ginzburg-Landau equation with time-delay feedback. Conference Publications, 2011, 2011 (Special) : 1329-1334. doi: 10.3934/proc.2011.2011.1329

[5]

Linna Li, Changjun Yu, Ning Zhang, Yanqin Bai, Zhiyuan Gao. A time-scaling technique for time-delay switched systems. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 0-0. doi: 10.3934/dcdss.2020108

[6]

Jean-Claude Saut, Jun-Ichi Segata. Asymptotic behavior in time of solution to the nonlinear Schrödinger equation with higher order anisotropic dispersion. Discrete & Continuous Dynamical Systems - A, 2019, 39 (1) : 219-239. doi: 10.3934/dcds.2019009

[7]

B. Cantó, C. Coll, A. Herrero, E. Sánchez, N. Thome. Pole-assignment of discrete time-delay systems with symmetries. Discrete & Continuous Dynamical Systems - B, 2006, 6 (3) : 641-649. doi: 10.3934/dcdsb.2006.6.641

[8]

Ming He, Xiaoyun Ma, Weijiang Zhang. Oscillation death in systems of oscillators with transferable coupling and time-delay. Discrete & Continuous Dynamical Systems - A, 2001, 7 (4) : 737-745. doi: 10.3934/dcds.2001.7.737

[9]

Chongyang Liu, Meijia Han, Zhaohua Gong, Kok Lay Teo. Robust parameter estimation for constrained time-delay systems with inexact measurements. Journal of Industrial & Management Optimization, 2017, 13 (5) : 0-0. doi: 10.3934/jimo.2019113

[10]

Sun-Ho Choi. Weighted energy method and long wave short wave decomposition on the linearized compressible Navier-Stokes equation. Networks & Heterogeneous Media, 2013, 8 (2) : 465-479. doi: 10.3934/nhm.2013.8.465

[11]

Ming Mei. Stability of traveling wavefronts for time-delayed reaction-diffusion equations. Conference Publications, 2009, 2009 (Special) : 526-535. doi: 10.3934/proc.2009.2009.526

[12]

Grégoire Allaire, M. Vanninathan. Homogenization of the Schrödinger equation with a time oscillating potential. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 1-16. doi: 10.3934/dcdsb.2006.6.1

[13]

Serge Nicaise, Cristina Pignotti, Julie Valein. Exponential stability of the wave equation with boundary time-varying delay. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 693-722. doi: 10.3934/dcdss.2011.4.693

[14]

Rui Huang, Ming Mei, Yong Wang. Planar traveling waves for nonlocal dispersion equation with monostable nonlinearity. Discrete & Continuous Dynamical Systems - A, 2012, 32 (10) : 3621-3649. doi: 10.3934/dcds.2012.32.3621

[15]

Ferhat Mohamed, Hakem Ali. Energy decay of solutions for the wave equation with a time-varying delay term in the weakly nonlinear internal feedbacks. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 491-506. doi: 10.3934/dcdsb.2017024

[16]

Cui-Ping Cheng, Wan-Tong Li, Zhi-Cheng Wang. Asymptotic stability of traveling wavefronts in a delayed population model with stage structure on a two-dimensional spatial lattice. Discrete & Continuous Dynamical Systems - B, 2010, 13 (3) : 559-575. doi: 10.3934/dcdsb.2010.13.559

[17]

Richard H. Rand, Asok K. Sen. A numerical investigation of the dynamics of a system of two time-delay coupled relaxation oscillators. Communications on Pure & Applied Analysis, 2003, 2 (4) : 567-577. doi: 10.3934/cpaa.2003.2.567

[18]

Zhong-Jie Han, Gen-Qi Xu. Dynamical behavior of networks of non-uniform Timoshenko beams system with boundary time-delay inputs. Networks & Heterogeneous Media, 2011, 6 (2) : 297-327. doi: 10.3934/nhm.2011.6.297

[19]

Nguyen H. Sau, Vu N. Phat. LP approach to exponential stabilization of singular linear positive time-delay systems via memory state feedback. Journal of Industrial & Management Optimization, 2018, 14 (2) : 583-596. doi: 10.3934/jimo.2017061

[20]

J. C. Robinson. A topological time-delay embedding theorem for infinite-dimensional cocycle dynamical systems. Discrete & Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 731-741. doi: 10.3934/dcdsb.2008.9.731

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (19)
  • HTML views (0)
  • Cited by (8)

Other articles
by authors

[Back to Top]