March  2016, 36(3): 1331-1353. doi: 10.3934/dcds.2016.36.1331

Asymptotic stability of non-monotone traveling waves for time-delayed nonlocal dispersion equations

1. 

School of Mathematical Sciences, South China Normal University, Guangzhou, Guangdong, 510631

2. 

Department of Mathematics, Champlain College Saint-Lambert, Quebec, J4P 3P2

3. 

School of Mathematics and Statistics, Northeast Normal University, Changchun, MO 130024

4. 

School of Science, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China

Received  December 2014 Revised  March 2015 Published  August 2015

This paper is concerned with the stability of non-monotone traveling waves to a nonlocal dispersion equation with time-delay, a time-delayed integro-differential equation. When the equation is crossing-monostable, the equation and the traveling waves both loss their monotonicity, and the traveling waves are oscillating as the time-delay is big. In this paper, we prove that all non-critical traveling waves (the wave speed is greater than the minimum speed), including those oscillatory waves, are time-exponentially stable, when the initial perturbations around the waves are small. The adopted approach is still the technical weighted-energy method but with a new development. Numerical simulations in different cases are also carried out, which further confirm our theoretical result. Finally, as a corollary of our stability result, we immediately obtain the uniqueness of the traveling waves for the non-monotone integro-differential equation, which was open so far as we know.
Citation: Rui Huang, Ming Mei, Kaijun Zhang, Qifeng Zhang. Asymptotic stability of non-monotone traveling waves for time-delayed nonlocal dispersion equations. Discrete & Continuous Dynamical Systems, 2016, 36 (3) : 1331-1353. doi: 10.3934/dcds.2016.36.1331
References:
[1]

M. Aguerra, C. Gomez and S. Trofimchuk, On uniqueness of semi-wavefronts, Math. Ann., 354 (2012), 73-109. doi: 10.1007/s00208-011-0722-8.  Google Scholar

[2]

F. Andreu-Vaillo, J. M. Mazon, J. D. Rossi and J. J. Toledo-Melero, Nonlocal Diffusion Problems, Math. Surveys and Monographs, Vol. 165, Amer. Math. Soc., 2010. doi: 10.1090/surv/165.  Google Scholar

[3]

E. Chasseigne, M. Chaves and J. Rossi, Asymptotic behavior for nonlocal diffusion equations, J. Math. Pure Appl., 86 (2006), 271-291. doi: 10.1016/j.matpur.2006.04.005.  Google Scholar

[4]

C. Cortazar, M. Elgueta, J. D. Rossi and N. Wolanski, How to approximate the heat equation with Neumann boundary conditions by nonlocal diffusion problems, Arch. Rational Mech. Anal., 187 (2008), 137-156. doi: 10.1007/s00205-007-0062-8.  Google Scholar

[5]

J. Coville, On uniqueness and monotonicity of solutions of non-local reaction-diffusion equation, Annali. di Matematica Pura Appl., 185 (2006), 461-485. doi: 10.1007/s10231-005-0163-7.  Google Scholar

[6]

J. Coville, J. Dávila and S. Martínez, Nonlocal anisotropic dispersal with monostable nonlinearity, J. Differential Equations, 244 (2008), 3080-3118. doi: 10.1016/j.jde.2007.11.002.  Google Scholar

[7]

J. Coville and L. Dupaigne, On a non-local equation arising in population dynamics, Proc. Roy. Soc. Edinburgh Sect. A, 137 (2007), 727-755. doi: 10.1017/S0308210504000721.  Google Scholar

[8]

J. Coville and L. Dupaigne, Propagation speed of travelling fronts in non local reaction-diffusion equations, Nonlinear Anal., 60 (2005), 797-819. doi: 10.1016/j.na.2003.10.030.  Google Scholar

[9]

J. Fang and X.-Q. Zhao, Existence and uniqueness of traveling waves for non-monotone integral equations with applications, J. Differential Equations, 248 (2010), 2199-2226. doi: 10.1016/j.jde.2010.01.009.  Google Scholar

[10]

P. C. Fife, Mathematical Aspects of Reacting and Diffusing Systems, Lecture Notes in Biomathematics, 28, Springer-Verlag, Berlin-New York, 1979.  Google Scholar

[11]

W. S. C. Gurney, S. P. Blythe and R. M. Nisbet, Nicholson's blowflies revisited, Nature, 287 (1980), 17-21. doi: 10.1038/287017a0.  Google Scholar

[12]

A. Gomez and S. Trofimchuk, Global continuation of monotone wavefronts, J. London Math. Soc., 89 (2014), 47-68. doi: 10.1112/jlms/jdt050.  Google Scholar

[13]

S. A. Gourley, J. W.-H. So and J. Wu, Nonlocalily of reaction-diffusion equations induced by delay: Biological modeling and nonlinear dynamics, (Russian) Sovrem. Mat. Fundam. Napravl., 1 (2003), 84-120; translation in J. Math. Sci., 124 (2004), 5119-5153. doi: 10.1023/B:JOTH.0000047249.39572.6d.  Google Scholar

[14]

S. A. Gourley and J. Wu, Delayed non-local diffusive systems in biological invasion and disease spread, in Nonlinear Dynamics and Evolution Equations (eds. H. Brunner, X.-Q. Zhao and X. Zou), Fields Institute Communications, 48, Amer. Math. Soc., Providence, RI, 2006, 137-200.  Google Scholar

[15]

R. Huang, M. Mei and Y. Wang, Planar traveling waves for nonlocal dispersion equation with monostable nonlinearity, Discret. Contin. Dyn. Syst. A, 32 (2012), 3621-3649. doi: 10.3934/dcds.2012.32.3621.  Google Scholar

[16]

L. Ignat and J. D. Rossi, Decay estimates for nonlocal problems via energy methods, J. Math. Pure Appl.(9), 92 (2009), 163-187. doi: 10.1016/j.matpur.2009.04.009.  Google Scholar

[17]

L. Ignat and J. D. Rossi, A nonlocal convolution-diffusion equation, J. Func. Anal., 251 (2007), 399-437. doi: 10.1016/j.jfa.2007.07.013.  Google Scholar

[18]

D. Liang and J. Wu, Travelling waves and numerical approximations in a reaction advection diffusion equation with nonlocal delayed effects, J. Nonlinear Sci., 13 (2003), 289-310. doi: 10.1007/s00332-003-0524-6.  Google Scholar

[19]

C.-K. Lin, C.-T. Lin, Y. P. Lin and M. Mei, Exponential stability of nonmonotone traveling waves for Nicholson's blowflies equation, SIAM J. Math. Anal., 46 (2014), 1053-1084. doi: 10.1137/120904391.  Google Scholar

[20]

M. C. Mackey and L. Glass, Oscillation and chaos in physiological control systems, Science, 197 (1977), 287-289. doi: 10.1126/science.267326.  Google Scholar

[21]

A. Matsumura and M. Mei, Nonlinear stability of viscous shock profile for a non-convex system of viscoelasticity, Osaka J. Math., 34 (1997), 589-603.  Google Scholar

[22]

M. Mei, C.-K. Lin, C.-T. Lin and J. W.-H. So, Traveling wavefronts for time-delayed reaction-diffusion equation. I. Local nonlinearity, J. Differential Equations, 247 (2009), 495-510. doi: 10.1016/j.jde.2008.12.026.  Google Scholar

[23]

M. Mei, C.-K. Lin, C.-T. Lin and J. W.-H. So, Traveling wavefronts for time-delayed reaction-diffusion equation. II. Nonlocal nonlinearity, J. Differential Equations, 247 (2009), 511-529. doi: 10.1016/j.jde.2008.12.020.  Google Scholar

[24]

M. Mei, J. W.-H. So, M. Li and S. Shen, Asymptotic stability of travelling waves for Nicholson's blowflies equation with diffusion, Proc. Roy. Soc. Edinburgh Sec. A, 134 (2004), 579-594. doi: 10.1017/S0308210500003358.  Google Scholar

[25]

M. Mei and J. W.-H. So, Stability of strong travelling waves for a non-local time-delayed reaction-diffusion equation, Proc. Roy. Soc. Edinburgh Sec. A, 138 (2008), 551-568. doi: 10.1017/S0308210506000333.  Google Scholar

[26]

M. Mei, C. Ou and X.-Q. Zhao, Global stability of monostable traveling waves for nonlocal time-delayed reaction-diffusion equations, SIAM J. Math. Anal., 42 (2010), 2762-2790; Erratum, SIAM J. Math. Anal., 44 (2012), 538-540. doi: 10.1137/090776342.  Google Scholar

[27]

M. Mei and Y. Wang, Remark on stability of traveling waves for nonlocal Fisher-KPP equations, Int. J. Numer. Anal. Model. Seris B, 2 (2011), 379-401.  Google Scholar

[28]

M. Mei and Y. S. Wong, Novel stability results for traveling wavefronts in an age-structured reaction-diffusion equations, Math. Biosci. Engin., 6 (2009), 743-752. doi: 10.3934/mbe.2009.6.743.  Google Scholar

[29]

J. A. J. Metz and O. Diekmann, The dynamics of Physiologically Structured Populations, Springer, New York, 1986. doi: 10.1007/978-3-662-13159-6.  Google Scholar

[30]

H. J. K. Moet, A note on the asymptotic behavior of solutions of the KPP equation, SIAM J. Math. Anal., 10 (1979), 728-732. doi: 10.1137/0510067.  Google Scholar

[31]

S. Pan, W.-T. Li and G. Lin, Existence and stability of traveling wavefronts in a nonlocal diffusion equation with delay, Nonlinear Anal., 72 (2010), 3150-3158. doi: 10.1016/j.na.2009.12.008.  Google Scholar

[32]

J. W.-H. So, J. Wu and X. Zou, A reaction-diffusion model for a single species with age structure: I. Traveling wavefronts on unbounded domains, Roy. Soc. London Proc. Series A Math. Phys. Eng. Sci., 457 (2001), 1841-1853. doi: 10.1098/rspa.2001.0789.  Google Scholar

[33]

E. Trofimchuk and S. Trofimchunk, Admissible wavefront speeds for a single species reaction-diffusion equation with delay, Discrete Contin. Dyn. Syst. A, 20 (2008), 407-423. doi: 10.3934/dcds.2008.20.407.  Google Scholar

[34]

E. Trofimchuk, V. Tkachenko and S. Trofimchuk, Slowly oscillating wave solutions of a single species reaction-diffusion equation with delay, J. Differential Equations, 245 (2008), 2307-2332. doi: 10.1016/j.jde.2008.06.023.  Google Scholar

[35]

S.-L. Wu, H.-Q. Zhao and S.-Y. Liu, Asymptotic stability of traveling waves for delayed reaction-diffusion equations with crossing-monostability, Z. Angew. Math. Phys., 62 (2011), 377-397. doi: 10.1007/s00033-010-0112-1.  Google Scholar

[36]

H. Yagisita, Existence and nonexistence of traveling waves for a nonlocal monostable equation, Publ. Res. Inst. Math. Sci., 45 (2009), 925-953. doi: 10.2977/prims/1260476648.  Google Scholar

[37]

G.-B. Zhang, Traveling waves in a nonlocal dispersal population model with age-structure, Nonlinear Anal., 74 (2011), 5030-5047. doi: 10.1016/j.na.2011.04.069.  Google Scholar

[38]

G.-B. Zhang and R. Ma, Spreading speeds and traveling waves for a nonlocal dispersal equation with convolution-type crossing-monostable nonlinearity, Z. Ang. Math. Phys., 64 (2013), 1643-1659. doi: 10.1007/s00033-013-0353-x.  Google Scholar

show all references

References:
[1]

M. Aguerra, C. Gomez and S. Trofimchuk, On uniqueness of semi-wavefronts, Math. Ann., 354 (2012), 73-109. doi: 10.1007/s00208-011-0722-8.  Google Scholar

[2]

F. Andreu-Vaillo, J. M. Mazon, J. D. Rossi and J. J. Toledo-Melero, Nonlocal Diffusion Problems, Math. Surveys and Monographs, Vol. 165, Amer. Math. Soc., 2010. doi: 10.1090/surv/165.  Google Scholar

[3]

E. Chasseigne, M. Chaves and J. Rossi, Asymptotic behavior for nonlocal diffusion equations, J. Math. Pure Appl., 86 (2006), 271-291. doi: 10.1016/j.matpur.2006.04.005.  Google Scholar

[4]

C. Cortazar, M. Elgueta, J. D. Rossi and N. Wolanski, How to approximate the heat equation with Neumann boundary conditions by nonlocal diffusion problems, Arch. Rational Mech. Anal., 187 (2008), 137-156. doi: 10.1007/s00205-007-0062-8.  Google Scholar

[5]

J. Coville, On uniqueness and monotonicity of solutions of non-local reaction-diffusion equation, Annali. di Matematica Pura Appl., 185 (2006), 461-485. doi: 10.1007/s10231-005-0163-7.  Google Scholar

[6]

J. Coville, J. Dávila and S. Martínez, Nonlocal anisotropic dispersal with monostable nonlinearity, J. Differential Equations, 244 (2008), 3080-3118. doi: 10.1016/j.jde.2007.11.002.  Google Scholar

[7]

J. Coville and L. Dupaigne, On a non-local equation arising in population dynamics, Proc. Roy. Soc. Edinburgh Sect. A, 137 (2007), 727-755. doi: 10.1017/S0308210504000721.  Google Scholar

[8]

J. Coville and L. Dupaigne, Propagation speed of travelling fronts in non local reaction-diffusion equations, Nonlinear Anal., 60 (2005), 797-819. doi: 10.1016/j.na.2003.10.030.  Google Scholar

[9]

J. Fang and X.-Q. Zhao, Existence and uniqueness of traveling waves for non-monotone integral equations with applications, J. Differential Equations, 248 (2010), 2199-2226. doi: 10.1016/j.jde.2010.01.009.  Google Scholar

[10]

P. C. Fife, Mathematical Aspects of Reacting and Diffusing Systems, Lecture Notes in Biomathematics, 28, Springer-Verlag, Berlin-New York, 1979.  Google Scholar

[11]

W. S. C. Gurney, S. P. Blythe and R. M. Nisbet, Nicholson's blowflies revisited, Nature, 287 (1980), 17-21. doi: 10.1038/287017a0.  Google Scholar

[12]

A. Gomez and S. Trofimchuk, Global continuation of monotone wavefronts, J. London Math. Soc., 89 (2014), 47-68. doi: 10.1112/jlms/jdt050.  Google Scholar

[13]

S. A. Gourley, J. W.-H. So and J. Wu, Nonlocalily of reaction-diffusion equations induced by delay: Biological modeling and nonlinear dynamics, (Russian) Sovrem. Mat. Fundam. Napravl., 1 (2003), 84-120; translation in J. Math. Sci., 124 (2004), 5119-5153. doi: 10.1023/B:JOTH.0000047249.39572.6d.  Google Scholar

[14]

S. A. Gourley and J. Wu, Delayed non-local diffusive systems in biological invasion and disease spread, in Nonlinear Dynamics and Evolution Equations (eds. H. Brunner, X.-Q. Zhao and X. Zou), Fields Institute Communications, 48, Amer. Math. Soc., Providence, RI, 2006, 137-200.  Google Scholar

[15]

R. Huang, M. Mei and Y. Wang, Planar traveling waves for nonlocal dispersion equation with monostable nonlinearity, Discret. Contin. Dyn. Syst. A, 32 (2012), 3621-3649. doi: 10.3934/dcds.2012.32.3621.  Google Scholar

[16]

L. Ignat and J. D. Rossi, Decay estimates for nonlocal problems via energy methods, J. Math. Pure Appl.(9), 92 (2009), 163-187. doi: 10.1016/j.matpur.2009.04.009.  Google Scholar

[17]

L. Ignat and J. D. Rossi, A nonlocal convolution-diffusion equation, J. Func. Anal., 251 (2007), 399-437. doi: 10.1016/j.jfa.2007.07.013.  Google Scholar

[18]

D. Liang and J. Wu, Travelling waves and numerical approximations in a reaction advection diffusion equation with nonlocal delayed effects, J. Nonlinear Sci., 13 (2003), 289-310. doi: 10.1007/s00332-003-0524-6.  Google Scholar

[19]

C.-K. Lin, C.-T. Lin, Y. P. Lin and M. Mei, Exponential stability of nonmonotone traveling waves for Nicholson's blowflies equation, SIAM J. Math. Anal., 46 (2014), 1053-1084. doi: 10.1137/120904391.  Google Scholar

[20]

M. C. Mackey and L. Glass, Oscillation and chaos in physiological control systems, Science, 197 (1977), 287-289. doi: 10.1126/science.267326.  Google Scholar

[21]

A. Matsumura and M. Mei, Nonlinear stability of viscous shock profile for a non-convex system of viscoelasticity, Osaka J. Math., 34 (1997), 589-603.  Google Scholar

[22]

M. Mei, C.-K. Lin, C.-T. Lin and J. W.-H. So, Traveling wavefronts for time-delayed reaction-diffusion equation. I. Local nonlinearity, J. Differential Equations, 247 (2009), 495-510. doi: 10.1016/j.jde.2008.12.026.  Google Scholar

[23]

M. Mei, C.-K. Lin, C.-T. Lin and J. W.-H. So, Traveling wavefronts for time-delayed reaction-diffusion equation. II. Nonlocal nonlinearity, J. Differential Equations, 247 (2009), 511-529. doi: 10.1016/j.jde.2008.12.020.  Google Scholar

[24]

M. Mei, J. W.-H. So, M. Li and S. Shen, Asymptotic stability of travelling waves for Nicholson's blowflies equation with diffusion, Proc. Roy. Soc. Edinburgh Sec. A, 134 (2004), 579-594. doi: 10.1017/S0308210500003358.  Google Scholar

[25]

M. Mei and J. W.-H. So, Stability of strong travelling waves for a non-local time-delayed reaction-diffusion equation, Proc. Roy. Soc. Edinburgh Sec. A, 138 (2008), 551-568. doi: 10.1017/S0308210506000333.  Google Scholar

[26]

M. Mei, C. Ou and X.-Q. Zhao, Global stability of monostable traveling waves for nonlocal time-delayed reaction-diffusion equations, SIAM J. Math. Anal., 42 (2010), 2762-2790; Erratum, SIAM J. Math. Anal., 44 (2012), 538-540. doi: 10.1137/090776342.  Google Scholar

[27]

M. Mei and Y. Wang, Remark on stability of traveling waves for nonlocal Fisher-KPP equations, Int. J. Numer. Anal. Model. Seris B, 2 (2011), 379-401.  Google Scholar

[28]

M. Mei and Y. S. Wong, Novel stability results for traveling wavefronts in an age-structured reaction-diffusion equations, Math. Biosci. Engin., 6 (2009), 743-752. doi: 10.3934/mbe.2009.6.743.  Google Scholar

[29]

J. A. J. Metz and O. Diekmann, The dynamics of Physiologically Structured Populations, Springer, New York, 1986. doi: 10.1007/978-3-662-13159-6.  Google Scholar

[30]

H. J. K. Moet, A note on the asymptotic behavior of solutions of the KPP equation, SIAM J. Math. Anal., 10 (1979), 728-732. doi: 10.1137/0510067.  Google Scholar

[31]

S. Pan, W.-T. Li and G. Lin, Existence and stability of traveling wavefronts in a nonlocal diffusion equation with delay, Nonlinear Anal., 72 (2010), 3150-3158. doi: 10.1016/j.na.2009.12.008.  Google Scholar

[32]

J. W.-H. So, J. Wu and X. Zou, A reaction-diffusion model for a single species with age structure: I. Traveling wavefronts on unbounded domains, Roy. Soc. London Proc. Series A Math. Phys. Eng. Sci., 457 (2001), 1841-1853. doi: 10.1098/rspa.2001.0789.  Google Scholar

[33]

E. Trofimchuk and S. Trofimchunk, Admissible wavefront speeds for a single species reaction-diffusion equation with delay, Discrete Contin. Dyn. Syst. A, 20 (2008), 407-423. doi: 10.3934/dcds.2008.20.407.  Google Scholar

[34]

E. Trofimchuk, V. Tkachenko and S. Trofimchuk, Slowly oscillating wave solutions of a single species reaction-diffusion equation with delay, J. Differential Equations, 245 (2008), 2307-2332. doi: 10.1016/j.jde.2008.06.023.  Google Scholar

[35]

S.-L. Wu, H.-Q. Zhao and S.-Y. Liu, Asymptotic stability of traveling waves for delayed reaction-diffusion equations with crossing-monostability, Z. Angew. Math. Phys., 62 (2011), 377-397. doi: 10.1007/s00033-010-0112-1.  Google Scholar

[36]

H. Yagisita, Existence and nonexistence of traveling waves for a nonlocal monostable equation, Publ. Res. Inst. Math. Sci., 45 (2009), 925-953. doi: 10.2977/prims/1260476648.  Google Scholar

[37]

G.-B. Zhang, Traveling waves in a nonlocal dispersal population model with age-structure, Nonlinear Anal., 74 (2011), 5030-5047. doi: 10.1016/j.na.2011.04.069.  Google Scholar

[38]

G.-B. Zhang and R. Ma, Spreading speeds and traveling waves for a nonlocal dispersal equation with convolution-type crossing-monostable nonlinearity, Z. Ang. Math. Phys., 64 (2013), 1643-1659. doi: 10.1007/s00033-013-0353-x.  Google Scholar

[1]

Qinqin Chai, Ryan Loxton, Kok Lay Teo, Chunhua Yang. A unified parameter identification method for nonlinear time-delay systems. Journal of Industrial & Management Optimization, 2013, 9 (2) : 471-486. doi: 10.3934/jimo.2013.9.471

[2]

Karel Hasik, Sergei Trofimchuk. Slowly oscillating wavefronts of the KPP-Fisher delayed equation. Discrete & Continuous Dynamical Systems, 2014, 34 (9) : 3511-3533. doi: 10.3934/dcds.2014.34.3511

[3]

Nabil T. Fadai, Michael J. Ward, Juncheng Wei. A time-delay in the activator kinetics enhances the stability of a spike solution to the gierer-meinhardt model. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1431-1458. doi: 10.3934/dcdsb.2018158

[4]

Michael Stich, Carsten Beta. Standing waves in a complex Ginzburg-Landau equation with time-delay feedback. Conference Publications, 2011, 2011 (Special) : 1329-1334. doi: 10.3934/proc.2011.2011.1329

[5]

Linna Li, Changjun Yu, Ning Zhang, Yanqin Bai, Zhiyuan Gao. A time-scaling technique for time-delay switched systems. Discrete & Continuous Dynamical Systems - S, 2020, 13 (6) : 1825-1843. doi: 10.3934/dcdss.2020108

[6]

Jean-Claude Saut, Jun-Ichi Segata. Asymptotic behavior in time of solution to the nonlinear Schrödinger equation with higher order anisotropic dispersion. Discrete & Continuous Dynamical Systems, 2019, 39 (1) : 219-239. doi: 10.3934/dcds.2019009

[7]

B. Cantó, C. Coll, A. Herrero, E. Sánchez, N. Thome. Pole-assignment of discrete time-delay systems with symmetries. Discrete & Continuous Dynamical Systems - B, 2006, 6 (3) : 641-649. doi: 10.3934/dcdsb.2006.6.641

[8]

Xiaochen Mao, Weijie Ding, Xiangyu Zhou, Song Wang, Xingyong Li. Complexity in time-delay networks of multiple interacting neural groups. Electronic Research Archive, , () : -. doi: 10.3934/era.2021022

[9]

Maoli Chen, Xiao Wang, Yicheng Liu. Collision-free flocking for a time-delay system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1223-1241. doi: 10.3934/dcdsb.2020251

[10]

Chongyang Liu, Meijia Han, Zhaohua Gong, Kok Lay Teo. Robust parameter estimation for constrained time-delay systems with inexact measurements. Journal of Industrial & Management Optimization, 2021, 17 (1) : 317-337. doi: 10.3934/jimo.2019113

[11]

Changjun Yu, Lei Yuan, Shuxuan Su. A new gradient computational formula for optimal control problems with time-delay. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021076

[12]

Ming He, Xiaoyun Ma, Weijiang Zhang. Oscillation death in systems of oscillators with transferable coupling and time-delay. Discrete & Continuous Dynamical Systems, 2001, 7 (4) : 737-745. doi: 10.3934/dcds.2001.7.737

[13]

Sun-Ho Choi. Weighted energy method and long wave short wave decomposition on the linearized compressible Navier-Stokes equation. Networks & Heterogeneous Media, 2013, 8 (2) : 465-479. doi: 10.3934/nhm.2013.8.465

[14]

Ming Mei. Stability of traveling wavefronts for time-delayed reaction-diffusion equations. Conference Publications, 2009, 2009 (Special) : 526-535. doi: 10.3934/proc.2009.2009.526

[15]

Grégoire Allaire, M. Vanninathan. Homogenization of the Schrödinger equation with a time oscillating potential. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 1-16. doi: 10.3934/dcdsb.2006.6.1

[16]

Serge Nicaise, Cristina Pignotti, Julie Valein. Exponential stability of the wave equation with boundary time-varying delay. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 693-722. doi: 10.3934/dcdss.2011.4.693

[17]

Rui Huang, Ming Mei, Yong Wang. Planar traveling waves for nonlocal dispersion equation with monostable nonlinearity. Discrete & Continuous Dynamical Systems, 2012, 32 (10) : 3621-3649. doi: 10.3934/dcds.2012.32.3621

[18]

Juanjuan Huang, Yan Zhou, Xuerong Shi, Zuolei Wang. A single finite-time synchronization scheme of time-delay chaotic system with external periodic disturbance. Mathematical Foundations of Computing, 2019, 2 (4) : 333-346. doi: 10.3934/mfc.2019021

[19]

Cui-Ping Cheng, Wan-Tong Li, Zhi-Cheng Wang. Asymptotic stability of traveling wavefronts in a delayed population model with stage structure on a two-dimensional spatial lattice. Discrete & Continuous Dynamical Systems - B, 2010, 13 (3) : 559-575. doi: 10.3934/dcdsb.2010.13.559

[20]

Ferhat Mohamed, Hakem Ali. Energy decay of solutions for the wave equation with a time-varying delay term in the weakly nonlinear internal feedbacks. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 491-506. doi: 10.3934/dcdsb.2017024

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (57)
  • HTML views (0)
  • Cited by (14)

Other articles
by authors

[Back to Top]