March  2016, 36(3): 1331-1353. doi: 10.3934/dcds.2016.36.1331

Asymptotic stability of non-monotone traveling waves for time-delayed nonlocal dispersion equations

1. 

School of Mathematical Sciences, South China Normal University, Guangzhou, Guangdong, 510631

2. 

Department of Mathematics, Champlain College Saint-Lambert, Quebec, J4P 3P2

3. 

School of Mathematics and Statistics, Northeast Normal University, Changchun, MO 130024

4. 

School of Science, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China

Received  December 2014 Revised  March 2015 Published  August 2015

This paper is concerned with the stability of non-monotone traveling waves to a nonlocal dispersion equation with time-delay, a time-delayed integro-differential equation. When the equation is crossing-monostable, the equation and the traveling waves both loss their monotonicity, and the traveling waves are oscillating as the time-delay is big. In this paper, we prove that all non-critical traveling waves (the wave speed is greater than the minimum speed), including those oscillatory waves, are time-exponentially stable, when the initial perturbations around the waves are small. The adopted approach is still the technical weighted-energy method but with a new development. Numerical simulations in different cases are also carried out, which further confirm our theoretical result. Finally, as a corollary of our stability result, we immediately obtain the uniqueness of the traveling waves for the non-monotone integro-differential equation, which was open so far as we know.
Citation: Rui Huang, Ming Mei, Kaijun Zhang, Qifeng Zhang. Asymptotic stability of non-monotone traveling waves for time-delayed nonlocal dispersion equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1331-1353. doi: 10.3934/dcds.2016.36.1331
References:
[1]

M. Aguerra, C. Gomez and S. Trofimchuk, On uniqueness of semi-wavefronts,, Math. Ann., 354 (2012), 73.  doi: 10.1007/s00208-011-0722-8.  Google Scholar

[2]

F. Andreu-Vaillo, J. M. Mazon, J. D. Rossi and J. J. Toledo-Melero, Nonlocal Diffusion Problems,, Math. Surveys and Monographs, (2010).  doi: 10.1090/surv/165.  Google Scholar

[3]

E. Chasseigne, M. Chaves and J. Rossi, Asymptotic behavior for nonlocal diffusion equations,, J. Math. Pure Appl., 86 (2006), 271.  doi: 10.1016/j.matpur.2006.04.005.  Google Scholar

[4]

C. Cortazar, M. Elgueta, J. D. Rossi and N. Wolanski, How to approximate the heat equation with Neumann boundary conditions by nonlocal diffusion problems,, Arch. Rational Mech. Anal., 187 (2008), 137.  doi: 10.1007/s00205-007-0062-8.  Google Scholar

[5]

J. Coville, On uniqueness and monotonicity of solutions of non-local reaction-diffusion equation,, Annali. di Matematica Pura Appl., 185 (2006), 461.  doi: 10.1007/s10231-005-0163-7.  Google Scholar

[6]

J. Coville, J. Dávila and S. Martínez, Nonlocal anisotropic dispersal with monostable nonlinearity,, J. Differential Equations, 244 (2008), 3080.  doi: 10.1016/j.jde.2007.11.002.  Google Scholar

[7]

J. Coville and L. Dupaigne, On a non-local equation arising in population dynamics,, Proc. Roy. Soc. Edinburgh Sect. A, 137 (2007), 727.  doi: 10.1017/S0308210504000721.  Google Scholar

[8]

J. Coville and L. Dupaigne, Propagation speed of travelling fronts in non local reaction-diffusion equations,, Nonlinear Anal., 60 (2005), 797.  doi: 10.1016/j.na.2003.10.030.  Google Scholar

[9]

J. Fang and X.-Q. Zhao, Existence and uniqueness of traveling waves for non-monotone integral equations with applications,, J. Differential Equations, 248 (2010), 2199.  doi: 10.1016/j.jde.2010.01.009.  Google Scholar

[10]

P. C. Fife, Mathematical Aspects of Reacting and Diffusing Systems,, Lecture Notes in Biomathematics, 28 (1979).   Google Scholar

[11]

W. S. C. Gurney, S. P. Blythe and R. M. Nisbet, Nicholson's blowflies revisited,, Nature, 287 (1980), 17.  doi: 10.1038/287017a0.  Google Scholar

[12]

A. Gomez and S. Trofimchuk, Global continuation of monotone wavefronts,, J. London Math. Soc., 89 (2014), 47.  doi: 10.1112/jlms/jdt050.  Google Scholar

[13]

S. A. Gourley, J. W.-H. So and J. Wu, Nonlocalily of reaction-diffusion equations induced by delay: Biological modeling and nonlinear dynamics,, (Russian) Sovrem. Mat. Fundam. Napravl., 1 (2003), 84.  doi: 10.1023/B:JOTH.0000047249.39572.6d.  Google Scholar

[14]

S. A. Gourley and J. Wu, Delayed non-local diffusive systems in biological invasion and disease spread,, in Nonlinear Dynamics and Evolution Equations (eds. H. Brunner, (2006), 137.   Google Scholar

[15]

R. Huang, M. Mei and Y. Wang, Planar traveling waves for nonlocal dispersion equation with monostable nonlinearity,, Discret. Contin. Dyn. Syst. A, 32 (2012), 3621.  doi: 10.3934/dcds.2012.32.3621.  Google Scholar

[16]

L. Ignat and J. D. Rossi, Decay estimates for nonlocal problems via energy methods,, J. Math. Pure Appl.(9), 92 (2009), 163.  doi: 10.1016/j.matpur.2009.04.009.  Google Scholar

[17]

L. Ignat and J. D. Rossi, A nonlocal convolution-diffusion equation,, J. Func. Anal., 251 (2007), 399.  doi: 10.1016/j.jfa.2007.07.013.  Google Scholar

[18]

D. Liang and J. Wu, Travelling waves and numerical approximations in a reaction advection diffusion equation with nonlocal delayed effects,, J. Nonlinear Sci., 13 (2003), 289.  doi: 10.1007/s00332-003-0524-6.  Google Scholar

[19]

C.-K. Lin, C.-T. Lin, Y. P. Lin and M. Mei, Exponential stability of nonmonotone traveling waves for Nicholson's blowflies equation,, SIAM J. Math. Anal., 46 (2014), 1053.  doi: 10.1137/120904391.  Google Scholar

[20]

M. C. Mackey and L. Glass, Oscillation and chaos in physiological control systems,, Science, 197 (1977), 287.  doi: 10.1126/science.267326.  Google Scholar

[21]

A. Matsumura and M. Mei, Nonlinear stability of viscous shock profile for a non-convex system of viscoelasticity,, Osaka J. Math., 34 (1997), 589.   Google Scholar

[22]

M. Mei, C.-K. Lin, C.-T. Lin and J. W.-H. So, Traveling wavefronts for time-delayed reaction-diffusion equation. I. Local nonlinearity,, J. Differential Equations, 247 (2009), 495.  doi: 10.1016/j.jde.2008.12.026.  Google Scholar

[23]

M. Mei, C.-K. Lin, C.-T. Lin and J. W.-H. So, Traveling wavefronts for time-delayed reaction-diffusion equation. II. Nonlocal nonlinearity,, J. Differential Equations, 247 (2009), 511.  doi: 10.1016/j.jde.2008.12.020.  Google Scholar

[24]

M. Mei, J. W.-H. So, M. Li and S. Shen, Asymptotic stability of travelling waves for Nicholson's blowflies equation with diffusion,, Proc. Roy. Soc. Edinburgh Sec. A, 134 (2004), 579.  doi: 10.1017/S0308210500003358.  Google Scholar

[25]

M. Mei and J. W.-H. So, Stability of strong travelling waves for a non-local time-delayed reaction-diffusion equation,, Proc. Roy. Soc. Edinburgh Sec. A, 138 (2008), 551.  doi: 10.1017/S0308210506000333.  Google Scholar

[26]

M. Mei, C. Ou and X.-Q. Zhao, Global stability of monostable traveling waves for nonlocal time-delayed reaction-diffusion equations,, SIAM J. Math. Anal., 42 (2010), 2762.  doi: 10.1137/090776342.  Google Scholar

[27]

M. Mei and Y. Wang, Remark on stability of traveling waves for nonlocal Fisher-KPP equations,, Int. J. Numer. Anal. Model. Seris B, 2 (2011), 379.   Google Scholar

[28]

M. Mei and Y. S. Wong, Novel stability results for traveling wavefronts in an age-structured reaction-diffusion equations,, Math. Biosci. Engin., 6 (2009), 743.  doi: 10.3934/mbe.2009.6.743.  Google Scholar

[29]

J. A. J. Metz and O. Diekmann, The dynamics of Physiologically Structured Populations,, Springer, (1986).  doi: 10.1007/978-3-662-13159-6.  Google Scholar

[30]

H. J. K. Moet, A note on the asymptotic behavior of solutions of the KPP equation,, SIAM J. Math. Anal., 10 (1979), 728.  doi: 10.1137/0510067.  Google Scholar

[31]

S. Pan, W.-T. Li and G. Lin, Existence and stability of traveling wavefronts in a nonlocal diffusion equation with delay,, Nonlinear Anal., 72 (2010), 3150.  doi: 10.1016/j.na.2009.12.008.  Google Scholar

[32]

J. W.-H. So, J. Wu and X. Zou, A reaction-diffusion model for a single species with age structure: I. Traveling wavefronts on unbounded domains,, Roy. Soc. London Proc. Series A Math. Phys. Eng. Sci., 457 (2001), 1841.  doi: 10.1098/rspa.2001.0789.  Google Scholar

[33]

E. Trofimchuk and S. Trofimchunk, Admissible wavefront speeds for a single species reaction-diffusion equation with delay,, Discrete Contin. Dyn. Syst. A, 20 (2008), 407.  doi: 10.3934/dcds.2008.20.407.  Google Scholar

[34]

E. Trofimchuk, V. Tkachenko and S. Trofimchuk, Slowly oscillating wave solutions of a single species reaction-diffusion equation with delay,, J. Differential Equations, 245 (2008), 2307.  doi: 10.1016/j.jde.2008.06.023.  Google Scholar

[35]

S.-L. Wu, H.-Q. Zhao and S.-Y. Liu, Asymptotic stability of traveling waves for delayed reaction-diffusion equations with crossing-monostability,, Z. Angew. Math. Phys., 62 (2011), 377.  doi: 10.1007/s00033-010-0112-1.  Google Scholar

[36]

H. Yagisita, Existence and nonexistence of traveling waves for a nonlocal monostable equation,, Publ. Res. Inst. Math. Sci., 45 (2009), 925.  doi: 10.2977/prims/1260476648.  Google Scholar

[37]

G.-B. Zhang, Traveling waves in a nonlocal dispersal population model with age-structure,, Nonlinear Anal., 74 (2011), 5030.  doi: 10.1016/j.na.2011.04.069.  Google Scholar

[38]

G.-B. Zhang and R. Ma, Spreading speeds and traveling waves for a nonlocal dispersal equation with convolution-type crossing-monostable nonlinearity,, Z. Ang. Math. Phys., 64 (2013), 1643.  doi: 10.1007/s00033-013-0353-x.  Google Scholar

show all references

References:
[1]

M. Aguerra, C. Gomez and S. Trofimchuk, On uniqueness of semi-wavefronts,, Math. Ann., 354 (2012), 73.  doi: 10.1007/s00208-011-0722-8.  Google Scholar

[2]

F. Andreu-Vaillo, J. M. Mazon, J. D. Rossi and J. J. Toledo-Melero, Nonlocal Diffusion Problems,, Math. Surveys and Monographs, (2010).  doi: 10.1090/surv/165.  Google Scholar

[3]

E. Chasseigne, M. Chaves and J. Rossi, Asymptotic behavior for nonlocal diffusion equations,, J. Math. Pure Appl., 86 (2006), 271.  doi: 10.1016/j.matpur.2006.04.005.  Google Scholar

[4]

C. Cortazar, M. Elgueta, J. D. Rossi and N. Wolanski, How to approximate the heat equation with Neumann boundary conditions by nonlocal diffusion problems,, Arch. Rational Mech. Anal., 187 (2008), 137.  doi: 10.1007/s00205-007-0062-8.  Google Scholar

[5]

J. Coville, On uniqueness and monotonicity of solutions of non-local reaction-diffusion equation,, Annali. di Matematica Pura Appl., 185 (2006), 461.  doi: 10.1007/s10231-005-0163-7.  Google Scholar

[6]

J. Coville, J. Dávila and S. Martínez, Nonlocal anisotropic dispersal with monostable nonlinearity,, J. Differential Equations, 244 (2008), 3080.  doi: 10.1016/j.jde.2007.11.002.  Google Scholar

[7]

J. Coville and L. Dupaigne, On a non-local equation arising in population dynamics,, Proc. Roy. Soc. Edinburgh Sect. A, 137 (2007), 727.  doi: 10.1017/S0308210504000721.  Google Scholar

[8]

J. Coville and L. Dupaigne, Propagation speed of travelling fronts in non local reaction-diffusion equations,, Nonlinear Anal., 60 (2005), 797.  doi: 10.1016/j.na.2003.10.030.  Google Scholar

[9]

J. Fang and X.-Q. Zhao, Existence and uniqueness of traveling waves for non-monotone integral equations with applications,, J. Differential Equations, 248 (2010), 2199.  doi: 10.1016/j.jde.2010.01.009.  Google Scholar

[10]

P. C. Fife, Mathematical Aspects of Reacting and Diffusing Systems,, Lecture Notes in Biomathematics, 28 (1979).   Google Scholar

[11]

W. S. C. Gurney, S. P. Blythe and R. M. Nisbet, Nicholson's blowflies revisited,, Nature, 287 (1980), 17.  doi: 10.1038/287017a0.  Google Scholar

[12]

A. Gomez and S. Trofimchuk, Global continuation of monotone wavefronts,, J. London Math. Soc., 89 (2014), 47.  doi: 10.1112/jlms/jdt050.  Google Scholar

[13]

S. A. Gourley, J. W.-H. So and J. Wu, Nonlocalily of reaction-diffusion equations induced by delay: Biological modeling and nonlinear dynamics,, (Russian) Sovrem. Mat. Fundam. Napravl., 1 (2003), 84.  doi: 10.1023/B:JOTH.0000047249.39572.6d.  Google Scholar

[14]

S. A. Gourley and J. Wu, Delayed non-local diffusive systems in biological invasion and disease spread,, in Nonlinear Dynamics and Evolution Equations (eds. H. Brunner, (2006), 137.   Google Scholar

[15]

R. Huang, M. Mei and Y. Wang, Planar traveling waves for nonlocal dispersion equation with monostable nonlinearity,, Discret. Contin. Dyn. Syst. A, 32 (2012), 3621.  doi: 10.3934/dcds.2012.32.3621.  Google Scholar

[16]

L. Ignat and J. D. Rossi, Decay estimates for nonlocal problems via energy methods,, J. Math. Pure Appl.(9), 92 (2009), 163.  doi: 10.1016/j.matpur.2009.04.009.  Google Scholar

[17]

L. Ignat and J. D. Rossi, A nonlocal convolution-diffusion equation,, J. Func. Anal., 251 (2007), 399.  doi: 10.1016/j.jfa.2007.07.013.  Google Scholar

[18]

D. Liang and J. Wu, Travelling waves and numerical approximations in a reaction advection diffusion equation with nonlocal delayed effects,, J. Nonlinear Sci., 13 (2003), 289.  doi: 10.1007/s00332-003-0524-6.  Google Scholar

[19]

C.-K. Lin, C.-T. Lin, Y. P. Lin and M. Mei, Exponential stability of nonmonotone traveling waves for Nicholson's blowflies equation,, SIAM J. Math. Anal., 46 (2014), 1053.  doi: 10.1137/120904391.  Google Scholar

[20]

M. C. Mackey and L. Glass, Oscillation and chaos in physiological control systems,, Science, 197 (1977), 287.  doi: 10.1126/science.267326.  Google Scholar

[21]

A. Matsumura and M. Mei, Nonlinear stability of viscous shock profile for a non-convex system of viscoelasticity,, Osaka J. Math., 34 (1997), 589.   Google Scholar

[22]

M. Mei, C.-K. Lin, C.-T. Lin and J. W.-H. So, Traveling wavefronts for time-delayed reaction-diffusion equation. I. Local nonlinearity,, J. Differential Equations, 247 (2009), 495.  doi: 10.1016/j.jde.2008.12.026.  Google Scholar

[23]

M. Mei, C.-K. Lin, C.-T. Lin and J. W.-H. So, Traveling wavefronts for time-delayed reaction-diffusion equation. II. Nonlocal nonlinearity,, J. Differential Equations, 247 (2009), 511.  doi: 10.1016/j.jde.2008.12.020.  Google Scholar

[24]

M. Mei, J. W.-H. So, M. Li and S. Shen, Asymptotic stability of travelling waves for Nicholson's blowflies equation with diffusion,, Proc. Roy. Soc. Edinburgh Sec. A, 134 (2004), 579.  doi: 10.1017/S0308210500003358.  Google Scholar

[25]

M. Mei and J. W.-H. So, Stability of strong travelling waves for a non-local time-delayed reaction-diffusion equation,, Proc. Roy. Soc. Edinburgh Sec. A, 138 (2008), 551.  doi: 10.1017/S0308210506000333.  Google Scholar

[26]

M. Mei, C. Ou and X.-Q. Zhao, Global stability of monostable traveling waves for nonlocal time-delayed reaction-diffusion equations,, SIAM J. Math. Anal., 42 (2010), 2762.  doi: 10.1137/090776342.  Google Scholar

[27]

M. Mei and Y. Wang, Remark on stability of traveling waves for nonlocal Fisher-KPP equations,, Int. J. Numer. Anal. Model. Seris B, 2 (2011), 379.   Google Scholar

[28]

M. Mei and Y. S. Wong, Novel stability results for traveling wavefronts in an age-structured reaction-diffusion equations,, Math. Biosci. Engin., 6 (2009), 743.  doi: 10.3934/mbe.2009.6.743.  Google Scholar

[29]

J. A. J. Metz and O. Diekmann, The dynamics of Physiologically Structured Populations,, Springer, (1986).  doi: 10.1007/978-3-662-13159-6.  Google Scholar

[30]

H. J. K. Moet, A note on the asymptotic behavior of solutions of the KPP equation,, SIAM J. Math. Anal., 10 (1979), 728.  doi: 10.1137/0510067.  Google Scholar

[31]

S. Pan, W.-T. Li and G. Lin, Existence and stability of traveling wavefronts in a nonlocal diffusion equation with delay,, Nonlinear Anal., 72 (2010), 3150.  doi: 10.1016/j.na.2009.12.008.  Google Scholar

[32]

J. W.-H. So, J. Wu and X. Zou, A reaction-diffusion model for a single species with age structure: I. Traveling wavefronts on unbounded domains,, Roy. Soc. London Proc. Series A Math. Phys. Eng. Sci., 457 (2001), 1841.  doi: 10.1098/rspa.2001.0789.  Google Scholar

[33]

E. Trofimchuk and S. Trofimchunk, Admissible wavefront speeds for a single species reaction-diffusion equation with delay,, Discrete Contin. Dyn. Syst. A, 20 (2008), 407.  doi: 10.3934/dcds.2008.20.407.  Google Scholar

[34]

E. Trofimchuk, V. Tkachenko and S. Trofimchuk, Slowly oscillating wave solutions of a single species reaction-diffusion equation with delay,, J. Differential Equations, 245 (2008), 2307.  doi: 10.1016/j.jde.2008.06.023.  Google Scholar

[35]

S.-L. Wu, H.-Q. Zhao and S.-Y. Liu, Asymptotic stability of traveling waves for delayed reaction-diffusion equations with crossing-monostability,, Z. Angew. Math. Phys., 62 (2011), 377.  doi: 10.1007/s00033-010-0112-1.  Google Scholar

[36]

H. Yagisita, Existence and nonexistence of traveling waves for a nonlocal monostable equation,, Publ. Res. Inst. Math. Sci., 45 (2009), 925.  doi: 10.2977/prims/1260476648.  Google Scholar

[37]

G.-B. Zhang, Traveling waves in a nonlocal dispersal population model with age-structure,, Nonlinear Anal., 74 (2011), 5030.  doi: 10.1016/j.na.2011.04.069.  Google Scholar

[38]

G.-B. Zhang and R. Ma, Spreading speeds and traveling waves for a nonlocal dispersal equation with convolution-type crossing-monostable nonlinearity,, Z. Ang. Math. Phys., 64 (2013), 1643.  doi: 10.1007/s00033-013-0353-x.  Google Scholar

[1]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[2]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[3]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[4]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[5]

Reza Lotfi, Zahra Yadegari, Seyed Hossein Hosseini, Amir Hossein Khameneh, Erfan Babaee Tirkolaee, Gerhard-Wilhelm Weber. A robust time-cost-quality-energy-environment trade-off with resource-constrained in project management: A case study for a bridge construction project. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020158

[6]

Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020341

[7]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[8]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[9]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[10]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[11]

Monia Capanna, Jean C. Nakasato, Marcone C. Pereira, Julio D. Rossi. Homogenization for nonlocal problems with smooth kernels. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020385

[12]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[13]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[14]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020268

[15]

Vivina Barutello, Gian Marco Canneori, Susanna Terracini. Minimal collision arcs asymptotic to central configurations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 61-86. doi: 10.3934/dcds.2020218

[16]

Mehdi Bastani, Davod Khojasteh Salkuyeh. On the GSOR iteration method for image restoration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 27-43. doi: 10.3934/naco.2020013

[17]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

[18]

Anna Canale, Francesco Pappalardo, Ciro Tarantino. Weighted multipolar Hardy inequalities and evolution problems with Kolmogorov operators perturbed by singular potentials. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020274

[19]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[20]

Shao-Xia Qiao, Li-Jun Du. Propagation dynamics of nonlocal dispersal equations with inhomogeneous bistable nonlinearity. Electronic Research Archive, , () : -. doi: 10.3934/era.2020116

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (47)
  • HTML views (0)
  • Cited by (13)

Other articles
by authors

[Back to Top]