\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Linearization of solution operators for state-dependent delay equations: A simple example

Abstract Related Papers Cited by
  • For state-dependent delay equations, it may easily happen that the equation is not differentiable. This hampers the formulation and the proof of the Principle of Linearized Stability. The fact that an equation is not differentiable does not, by itself, imply that the solution operators are not differentiable. And indeed, the aim of this paper is to present a simple example with differentiable solution operators despite of lack of differentiability of the equation. The example takes the form of a renewal equation and is motivated by a population dynamical model.
    Mathematics Subject Classification: Primary: 37N25, 92D25, 34K20; Secondary: 45D05, 58D07.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    O. Diekmann, P. Getto and M. Gyllenberg, Stability and bifurcation analysis of Volterra functional equations in the light of suns and stars, SIAM Journal on Mathematical Analysis, 39 (2008), 1023-1069.doi: 10.1137/060659211.

    [2]

    O. Diekmann, M. Gyllenberg, J. A. J. Metz, S. Nakaoka and A. M. de Roos, Daphnia revisited: local stability and bifurcation theory for physiologically structured population models explained by way of an example, Journal of Mathematical Biology, 61 (2010), 277-318.doi: 10.1007/s00285-009-0299-y.

    [3]

    O. Diekmann, S. A. van Gils, S. M. Verduyn Lunel and H.-O. Walter, Delay Equations. Functional-, Complex-, and Nonlinear Analysis, Springer-Verlag, New York, 1995.doi: 10.1007/978-1-4612-4206-2.

    [4]

    F. Hartung, On second-order differentiability with respect to parameters for differential equations with state-dependent delays, Journal of Dynamics and Differential Equations, 25 (2013), 1089-1138.doi: 10.1007/s10884-013-9330-5.

    [5]

    I. Győri and F. Hartung, Exponential stability of a state-dependent delay system, Discrete and Continuous Dynamical Systems - Series A, 18 (2007), 773-791.doi: 10.3934/dcds.2007.18.773.

    [6]

    F. Hartung, T. Krisztin, H.-O. Walther and J. Wu, Functional Differential Equations with State-Dependent Delays: Theory and Applications, in Handbook of Differential Equations: Ordinary Differential Equations (eds. A. Cañada, P. Drábek and A. Fonda), North-Holland, 3 (2006), 435-545.doi: 10.1016/S1874-5725(06)80009-X.

    [7]

    F. Hartung and J. Turi, Linearized stability in functional differential equations with state-dependent delays, Discrete and Continuous Dynamical Systems Supplements, Special (2001), 416-425.

    [8]

    M. L. Hbid, E. Sánchez and R. Bravo de la Parra, State-dependent delays associated to threshold phenomena in structured population dynamics, Mathematical Models and Methods in Applied Sciences, 17 (2007), 877-900.doi: 10.1142/S0218202507002145.

    [9]

    K. Korvasová, Linearized Stability in Case of State-Dependent Delay: A Simple Test Example, Master's thesis, Universiteit Utrecht, 2011.

    [10]

    N. Kosovalic, Y. Chen and J. Wu, Algebraic-delay differential systems: Age structured population modeling, $C^0$-extendable submanifolds and linearization, Preprint.

    [11]

    N. Kosovalic, F. M. G. Magpantay, Y. Chen and J. Wu, Abstract algebraic-delay differential systems and age structured population dynamics, Journal of Differential Equations, 255 (2013), 593-609.doi: 10.1016/j.jde.2013.04.025.

    [12]

    S. Mirrahimi, B. Perthame and J. Y. Wakano, Direct competition results from strong competition for limited resource, Journal of Mathematical Biology, 68 (2014), 931-949.doi: 10.1007/s00285-013-0659-5.

    [13]

    A. M. de Roos and L. Persson, Population and Community Ecology of Ontogenetic Development, Princeton University Press, Princeton, 2013.

    [14]

    W. M. Ruess, Linearized stability and regularity for nonlinear age-dependent population models, in Functional Analysis and Evolution Equations (eds. H. Amann, W. Arendt, M. Hieber, F. M. Neubrander, S. Nicaise and J. Below), Birkhäuser Basel, (2008), 561-576.doi: 10.1007/978-3-7643-7794-6_34.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(156) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return