January  2016, 36(1): 137-149. doi: 10.3934/dcds.2016.36.137

Linearization of solution operators for state-dependent delay equations: A simple example

1. 

Department of Mathematics, Utrecht University , Budapestlaan 6, 3584 CD Utrecht, Netherlands, Netherlands

Received  September 2014 Revised  April 2015 Published  June 2015

For state-dependent delay equations, it may easily happen that the equation is not differentiable. This hampers the formulation and the proof of the Principle of Linearized Stability. The fact that an equation is not differentiable does not, by itself, imply that the solution operators are not differentiable. And indeed, the aim of this paper is to present a simple example with differentiable solution operators despite of lack of differentiability of the equation. The example takes the form of a renewal equation and is motivated by a population dynamical model.
Citation: Odo Diekmann, Karolína Korvasová. Linearization of solution operators for state-dependent delay equations: A simple example. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 137-149. doi: 10.3934/dcds.2016.36.137
References:
[1]

O. Diekmann, P. Getto and M. Gyllenberg, Stability and bifurcation analysis of Volterra functional equations in the light of suns and stars,, SIAM Journal on Mathematical Analysis, 39 (2008), 1023. doi: 10.1137/060659211. Google Scholar

[2]

O. Diekmann, M. Gyllenberg, J. A. J. Metz, S. Nakaoka and A. M. de Roos, Daphnia revisited: local stability and bifurcation theory for physiologically structured population models explained by way of an example,, Journal of Mathematical Biology, 61 (2010), 277. doi: 10.1007/s00285-009-0299-y. Google Scholar

[3]

O. Diekmann, S. A. van Gils, S. M. Verduyn Lunel and H.-O. Walter, Delay Equations. Functional-, Complex-, and Nonlinear Analysis,, Springer-Verlag, (1995). doi: 10.1007/978-1-4612-4206-2. Google Scholar

[4]

F. Hartung, On second-order differentiability with respect to parameters for differential equations with state-dependent delays,, Journal of Dynamics and Differential Equations, 25 (2013), 1089. doi: 10.1007/s10884-013-9330-5. Google Scholar

[5]

I. Győri and F. Hartung, Exponential stability of a state-dependent delay system,, Discrete and Continuous Dynamical Systems - Series A, 18 (2007), 773. doi: 10.3934/dcds.2007.18.773. Google Scholar

[6]

F. Hartung, T. Krisztin, H.-O. Walther and J. Wu, Functional Differential Equations with State-Dependent Delays: Theory and Applications,, in Handbook of Differential Equations: Ordinary Differential Equations (eds. A. Cañada, 3 (2006), 435. doi: 10.1016/S1874-5725(06)80009-X. Google Scholar

[7]

F. Hartung and J. Turi, Linearized stability in functional differential equations with state-dependent delays,, Discrete and Continuous Dynamical Systems Supplements, Special (2001), 416. Google Scholar

[8]

M. L. Hbid, E. Sánchez and R. Bravo de la Parra, State-dependent delays associated to threshold phenomena in structured population dynamics,, Mathematical Models and Methods in Applied Sciences, 17 (2007), 877. doi: 10.1142/S0218202507002145. Google Scholar

[9]

K. Korvasová, Linearized Stability in Case of State-Dependent Delay: A Simple Test Example,, Master's thesis, (2011). Google Scholar

[10]

N. Kosovalic, Y. Chen and J. Wu, Algebraic-delay differential systems: Age structured population modeling, $C^0$-extendable submanifolds and linearization,, Preprint., (). Google Scholar

[11]

N. Kosovalic, F. M. G. Magpantay, Y. Chen and J. Wu, Abstract algebraic-delay differential systems and age structured population dynamics,, Journal of Differential Equations, 255 (2013), 593. doi: 10.1016/j.jde.2013.04.025. Google Scholar

[12]

S. Mirrahimi, B. Perthame and J. Y. Wakano, Direct competition results from strong competition for limited resource,, Journal of Mathematical Biology, 68 (2014), 931. doi: 10.1007/s00285-013-0659-5. Google Scholar

[13]

A. M. de Roos and L. Persson, Population and Community Ecology of Ontogenetic Development,, Princeton University Press, (2013). Google Scholar

[14]

W. M. Ruess, Linearized stability and regularity for nonlinear age-dependent population models,, in Functional Analysis and Evolution Equations (eds. H. Amann, (2008), 561. doi: 10.1007/978-3-7643-7794-6_34. Google Scholar

show all references

References:
[1]

O. Diekmann, P. Getto and M. Gyllenberg, Stability and bifurcation analysis of Volterra functional equations in the light of suns and stars,, SIAM Journal on Mathematical Analysis, 39 (2008), 1023. doi: 10.1137/060659211. Google Scholar

[2]

O. Diekmann, M. Gyllenberg, J. A. J. Metz, S. Nakaoka and A. M. de Roos, Daphnia revisited: local stability and bifurcation theory for physiologically structured population models explained by way of an example,, Journal of Mathematical Biology, 61 (2010), 277. doi: 10.1007/s00285-009-0299-y. Google Scholar

[3]

O. Diekmann, S. A. van Gils, S. M. Verduyn Lunel and H.-O. Walter, Delay Equations. Functional-, Complex-, and Nonlinear Analysis,, Springer-Verlag, (1995). doi: 10.1007/978-1-4612-4206-2. Google Scholar

[4]

F. Hartung, On second-order differentiability with respect to parameters for differential equations with state-dependent delays,, Journal of Dynamics and Differential Equations, 25 (2013), 1089. doi: 10.1007/s10884-013-9330-5. Google Scholar

[5]

I. Győri and F. Hartung, Exponential stability of a state-dependent delay system,, Discrete and Continuous Dynamical Systems - Series A, 18 (2007), 773. doi: 10.3934/dcds.2007.18.773. Google Scholar

[6]

F. Hartung, T. Krisztin, H.-O. Walther and J. Wu, Functional Differential Equations with State-Dependent Delays: Theory and Applications,, in Handbook of Differential Equations: Ordinary Differential Equations (eds. A. Cañada, 3 (2006), 435. doi: 10.1016/S1874-5725(06)80009-X. Google Scholar

[7]

F. Hartung and J. Turi, Linearized stability in functional differential equations with state-dependent delays,, Discrete and Continuous Dynamical Systems Supplements, Special (2001), 416. Google Scholar

[8]

M. L. Hbid, E. Sánchez and R. Bravo de la Parra, State-dependent delays associated to threshold phenomena in structured population dynamics,, Mathematical Models and Methods in Applied Sciences, 17 (2007), 877. doi: 10.1142/S0218202507002145. Google Scholar

[9]

K. Korvasová, Linearized Stability in Case of State-Dependent Delay: A Simple Test Example,, Master's thesis, (2011). Google Scholar

[10]

N. Kosovalic, Y. Chen and J. Wu, Algebraic-delay differential systems: Age structured population modeling, $C^0$-extendable submanifolds and linearization,, Preprint., (). Google Scholar

[11]

N. Kosovalic, F. M. G. Magpantay, Y. Chen and J. Wu, Abstract algebraic-delay differential systems and age structured population dynamics,, Journal of Differential Equations, 255 (2013), 593. doi: 10.1016/j.jde.2013.04.025. Google Scholar

[12]

S. Mirrahimi, B. Perthame and J. Y. Wakano, Direct competition results from strong competition for limited resource,, Journal of Mathematical Biology, 68 (2014), 931. doi: 10.1007/s00285-013-0659-5. Google Scholar

[13]

A. M. de Roos and L. Persson, Population and Community Ecology of Ontogenetic Development,, Princeton University Press, (2013). Google Scholar

[14]

W. M. Ruess, Linearized stability and regularity for nonlinear age-dependent population models,, in Functional Analysis and Evolution Equations (eds. H. Amann, (2008), 561. doi: 10.1007/978-3-7643-7794-6_34. Google Scholar

[1]

Wonlyul Ko, Inkyung Ahn, Shengqiang Liu. Asymptotical behaviors of a general diffusive consumer-resource model with maturation delay. Discrete & Continuous Dynamical Systems - B, 2015, 20 (6) : 1715-1733. doi: 10.3934/dcdsb.2015.20.1715

[2]

István Györi, Ferenc Hartung. Exponential stability of a state-dependent delay system. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 773-791. doi: 10.3934/dcds.2007.18.773

[3]

Eugen Stumpf. Local stability analysis of differential equations with state-dependent delay. Discrete & Continuous Dynamical Systems - A, 2016, 36 (6) : 3445-3461. doi: 10.3934/dcds.2016.36.3445

[4]

Ismael Maroto, Carmen Núñez, Rafael Obaya. Exponential stability for nonautonomous functional differential equations with state-dependent delay. Discrete & Continuous Dynamical Systems - B, 2017, 22 (8) : 3167-3197. doi: 10.3934/dcdsb.2017169

[5]

Hans-Otto Walther. On Poisson's state-dependent delay. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 365-379. doi: 10.3934/dcds.2013.33.365

[6]

Benjamin B. Kennedy. A periodic solution with non-simple oscillation for an equation with state-dependent delay and strictly monotonic negative feedback. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 47-66. doi: 10.3934/dcdss.2020003

[7]

Ferenc Hartung, Janos Turi. Linearized stability in functional differential equations with state-dependent delays. Conference Publications, 2001, 2001 (Special) : 416-425. doi: 10.3934/proc.2001.2001.416

[8]

Alexander Rezounenko. Stability of a viral infection model with state-dependent delay, CTL and antibody immune responses. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1547-1563. doi: 10.3934/dcdsb.2017074

[9]

Alexander Rezounenko. Viral infection model with diffusion and state-dependent delay: Stability of classical solutions. Discrete & Continuous Dynamical Systems - B, 2018, 23 (3) : 1091-1105. doi: 10.3934/dcdsb.2018143

[10]

Qingwen Hu. A model of regulatory dynamics with threshold-type state-dependent delay. Mathematical Biosciences & Engineering, 2018, 15 (4) : 863-882. doi: 10.3934/mbe.2018039

[11]

Ovide Arino, Eva Sánchez. A saddle point theorem for functional state-dependent delay differential equations. Discrete & Continuous Dynamical Systems - A, 2005, 12 (4) : 687-722. doi: 10.3934/dcds.2005.12.687

[12]

Benjamin B. Kennedy. Multiple periodic solutions of state-dependent threshold delay equations. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1801-1833. doi: 10.3934/dcds.2012.32.1801

[13]

Tibor Krisztin. A local unstable manifold for differential equations with state-dependent delay. Discrete & Continuous Dynamical Systems - A, 2003, 9 (4) : 993-1028. doi: 10.3934/dcds.2003.9.993

[14]

Ismael Maroto, Carmen NÚÑez, Rafael Obaya. Dynamical properties of nonautonomous functional differential equations with state-dependent delay. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3939-3961. doi: 10.3934/dcds.2017167

[15]

A. R. Humphries, O. A. DeMasi, F. M. G. Magpantay, F. Upham. Dynamics of a delay differential equation with multiple state-dependent delays. Discrete & Continuous Dynamical Systems - A, 2012, 32 (8) : 2701-2727. doi: 10.3934/dcds.2012.32.2701

[16]

Hermann Brunner, Stefano Maset. Time transformations for state-dependent delay differential equations. Communications on Pure & Applied Analysis, 2010, 9 (1) : 23-45. doi: 10.3934/cpaa.2010.9.23

[17]

Matthias Büger, Marcus R.W. Martin. Stabilizing control for an unbounded state-dependent delay equation. Conference Publications, 2001, 2001 (Special) : 56-65. doi: 10.3934/proc.2001.2001.56

[18]

Qingwen Hu, Huan Zhang. Stabilization of turning processes using spindle feedback with state-dependent delay. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4329-4360. doi: 10.3934/dcdsb.2018167

[19]

Jitai Liang, Ben Niu, Junjie Wei. Linearized stability for abstract functional differential equations subject to state-dependent delays with applications. Discrete & Continuous Dynamical Systems - B, 2019, 24 (11) : 6167-6188. doi: 10.3934/dcdsb.2019134

[20]

Benjamin B. Kennedy. A state-dependent delay equation with negative feedback and "mildly unstable" rapidly oscillating periodic solutions. Discrete & Continuous Dynamical Systems - B, 2013, 18 (6) : 1633-1650. doi: 10.3934/dcdsb.2013.18.1633

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (18)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]