March  2016, 36(3): 1431-1464. doi: 10.3934/dcds.2016.36.1431

Positive solutions of a nonlinear Schrödinger system with nonconstant potentials

1. 

College of Mathematics, Physics and Information Engineering, Jiaxing University, Zhejiang 314001, China

2. 

School of Mathematical Sciences, Capital Normal University, Beijing 100048, China

Received  November 2014 Revised  June 2015 Published  August 2015

Existence of a solution of the nonlinear Schrödinger system \begin{equation*} \left\{ \begin{aligned} & - \Delta u + V_1(x) u=\mu_1(x) u^3 + \beta(x) u v^2 \qquad\mbox{in}\ \mathbb{R}^N, \\ & - \Delta v + V_2(x) v=\beta(x) u^2 v + \mu_2(x) v^3 \qquad \mbox{in}\ \mathbb{R}^N, \\ & u>0,\ v>0,\quad u,\ v\in H^1(\mathbb{R}^N), \end{aligned} \right. \end{equation*} where $N=1,2,3$, and $V_j,\mu_j,\beta$ are continuous functions of $x\in\mathbb{R}^N$, is proved provided that either $V_j,\mu_j,\beta$ are invariant under the action of a finite subgroup of $O(N)$ or there is no such invariance assumption. In either case the result is obtained both for $\beta$ small and for $\beta$ large in terms of $V_j$ and $\mu_j$.
Citation: Haidong Liu, Zhaoli Liu. Positive solutions of a nonlinear Schrödinger system with nonconstant potentials. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1431-1464. doi: 10.3934/dcds.2016.36.1431
References:
[1]

S. Adachi, A positive solution of a nonhomogeneous elliptic equation in $\mathbbR^N$ with G-invariant nonlinearity,, Comm. Partial Differential Equations, 27 (2002), 1.  doi: 10.1081/PDE-120002781.  Google Scholar

[2]

N. Akhmediev and A. Ankiewicz, Partially coherent solitons on a finite background,, Phys. Rev. Lett., 82 (1999), 2661.  doi: 10.1103/PhysRevLett.82.2661.  Google Scholar

[3]

A. Ambrosetti, G. Cerami and D. Ruiz, Solitons of linearly coupled systems of semilinear non-autonomous equations on $\mathbb R^n$,, J. Funct. Anal., 254 (2008), 2816.  doi: 10.1016/j.jfa.2007.11.013.  Google Scholar

[4]

A. Ambrosetti and E. Colorado, Bound and ground states of coupled nonlinear Schrödinger equations,, C. R. Math. Acad. Sci. Paris, 342 (2006), 453.  doi: 10.1016/j.crma.2006.01.024.  Google Scholar

[5]

A. Ambrosetti and E. Colorado, Standing waves of some coupled nonlinear Schrödinger equations,, J. London Math. Soc., 75 (2007), 67.  doi: 10.1112/jlms/jdl020.  Google Scholar

[6]

A. Bahri and Y. Y. Li, On the min-max procedure for the existence of a positive solution for certain scalar field equations in $\mathbb R^N$,, Rev. Mat. Iberoamericana, 6 (1990), 1.  doi: 10.4171/RMI/92.  Google Scholar

[7]

A. Bahri and P. L. Lions, On the existence of a positive solution of semilinear elliptic equations in unbounded domains,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 14 (1997), 365.  doi: 10.1016/S0294-1449(97)80142-4.  Google Scholar

[8]

T. Bartsch, E. N. Dancer and Z.-Q. Wang, A Liouville theorem, a-priori bounds, and bifurcating branches of positive solutions for a nonlinear elliptic system,, Calc. Var. Partial Differential Equations, 37 (2010), 345.  doi: 10.1007/s00526-009-0265-y.  Google Scholar

[9]

T. Bartsch and Z.-Q. Wang, Note on ground states of nonlinear Schrédinger systems,, J. Partial Differential Equations, 19 (2006), 200.   Google Scholar

[10]

T. Bartsch, Z.-Q. Wang and J.C. Wei, Bound states for a coupled Schrödinger system,, J. Fixed Point Theory Appl., 2 (2007), 353.  doi: 10.1007/s11784-007-0033-6.  Google Scholar

[11]

V. Benci and G. Cerami, Positive solutions of some nonlinear elliptic problems in exterior domain,, Arch. Rational Mech. Anal., 99 (1987), 283.  doi: 10.1007/BF00282048.  Google Scholar

[12]

H. Brezis, On a characterization of flow invariant sets,, Comm. Pure Appl. Math., 23 (1970), 261.  doi: 10.1002/cpa.3160230211.  Google Scholar

[13]

H. Brezis and E. Lieb, A relation between pointwise convergence of functions and convergence of functionals,, Proc. Amer. Math. Soc., 88 (1983), 486.  doi: 10.1090/S0002-9939-1983-0699419-3.  Google Scholar

[14]

E. N. Dancer, J. C. Wei and T. Weth, A priori bounds versus multiple existence of positive solutions for a nonlinear Schrödinger system,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 953.  doi: 10.1016/j.anihpc.2010.01.009.  Google Scholar

[15]

K. Deimling, Ordinary Differential Equations in Banach Spaces,, Lecture Notes in Math., (1977).   Google Scholar

[16]

W. Y. Ding and W. M. Ni, On the existence of positive entire solutions of a semilinear elliptic equations,, Arch. Rational Mech. Anal., 91 (1986), 283.  doi: 10.1007/BF00282336.  Google Scholar

[17]

B. Gidas, W. M. Ni and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in $\mathbbR^n$,, in Mathematical Analysis and Applications, (1981), 369.   Google Scholar

[18]

F. T. Hioe, Solitary waves for two and three coupled nonlinear Schrödinger equations,, Phys. Rev. E, 58 (1998), 6700.  doi: 10.1103/PhysRevE.58.6700.  Google Scholar

[19]

F. T. Hioe, Solitary waves for $N$ coupled nonlinear Schrödinger equations,, Phys. Rev. Lett., 82 (1999), 1152.   Google Scholar

[20]

F. T. Hioe and T. S. Salter, Special set and solutions of coupled nonlinear Schrödinger equations,, J. Phys. A: Math. Gen., 35 (2002), 8913.  doi: 10.1088/0305-4470/35/42/303.  Google Scholar

[21]

J. Hirata, A positive solution of a nonlinear Schrödinger equation with $G$-symmetry,, Nonlinear Anal., 69 (2008), 3174.  doi: 10.1016/j.na.2007.09.010.  Google Scholar

[22]

M. K. Kwong, Uniqueness of positive solutions of $\Delta u-u+u^p=0$ in $\mathbbR^n$,, Arch. Rational Mech. Anal., 105 (1989), 243.  doi: 10.1007/BF00251502.  Google Scholar

[23]

L. S. Lin, Z. L. Liu and S. W. Chen, Multi-bump solutions for a semilinear Schrödinger equation,, Indiana Univ. Math. J., 58 (2009), 1659.  doi: 10.1512/iumj.2009.58.3611.  Google Scholar

[24]

T.-C. Lin and J. C. Wei, Ground state of $N$ coupled nonlinear Schrödinger equations in $\mathbbR^n,\ n\leq 3$,, Comm. Math. Phys., 255 (2005), 629.  doi: 10.1007/s00220-005-1313-x.  Google Scholar

[25]

P. L. Lions, The concentration-compactness principle in the calculus of variations, the locally compact case, part 1,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 109.   Google Scholar

[26]

H. D. Liu and Z. L. Liu, Ground states of a nonlinear Schrödinger system with nonconstant potentials,, Sci. China Math., 58 (2015), 257.  doi: 10.1007/s11425-014-4914-z.  Google Scholar

[27]

Z. L. Liu and Z.-Q. Wang, Multiple bound states of nonlinear Schrödinger systems,, Comm. Math. Phys., 282 (2008), 721.  doi: 10.1007/s00220-008-0546-x.  Google Scholar

[28]

Z. L. Liu and Z.-Q. Wang, Ground states and bound states of a nonlinear Schrödinger system,, Adv. Nonlinear Studies, 10 (2010), 175.   Google Scholar

[29]

L. A. Maia, E. Montefusco and B. Pellacci, Positive solutions for a weakly coupled nonlinear Schrödinger system,, J. Differential Equations, 229 (2006), 743.  doi: 10.1016/j.jde.2006.07.002.  Google Scholar

[30]

L. A. Maia, E. Montefusco and B. Pellacci, Infinitely many nodal solutions for a weakly coupled nonlinear Schrödinger system,, Comm. Contemp. Math., 10 (2008), 651.  doi: 10.1142/S0219199708002934.  Google Scholar

[31]

R. S. Palais, The principle of symmetric criticality,, Comm. Math. Phys., 69 (1979), 19.  doi: 10.1007/BF01941322.  Google Scholar

[32]

A. Pomponio, Coupled nonlinear Schrödinger systems with potentials,, J. Differential Equations, 227 (2006), 258.  doi: 10.1016/j.jde.2005.09.002.  Google Scholar

[33]

Y. Sato and Z.-Q. Wang, On the multiple existence of semi-positive solutions for a nonlinear Schrödinger system,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 30 (2013), 1.  doi: 10.1016/j.anihpc.2012.05.002.  Google Scholar

[34]

B. Sirakov, Least energy solitary waves for a system of nonlinear Schrödinger equations in $\mathbbR^n$,, Comm. Math. Phys., 271 (2007), 199.  doi: 10.1007/s00220-006-0179-x.  Google Scholar

[35]

R. S. Tian and Z.-Q. Wang, Multiple solitary wave solutions of nonlinear Schrödinger systems,, Topol. Methods Nonlinear Anal., 37 (2011), 203.   Google Scholar

[36]

E. Timmermans, Phase separation of Bose-Einstein condensates,, Phys. Rev. Lett., 81 (1998), 5718.  doi: 10.1103/PhysRevLett.81.5718.  Google Scholar

[37]

J. C. Wei and T. Weth, Nonradial symmetric bound states for a system of two coupled Schrödinger equations,, Rend. Lincei Mat. Appl., 18 (2007), 279.  doi: 10.4171/RLM/495.  Google Scholar

[38]

J. C. Wei and T. Weth, Radial solutions and phase seperation in a system of two coupled Schrödinger equations,, Arch. Rational Mech. Anal., 190 (2008), 83.  doi: 10.1007/s00205-008-0121-9.  Google Scholar

[39]

J. C. Wei and W. Yao, Uniqueness of positive solutions to some coupled nonlinear Schrödinger equations,, Comm. Pure Appl. Anal., 11 (2012), 1003.  doi: 10.3934/cpaa.2012.11.1003.  Google Scholar

[40]

M. Willem, Minimax Theorems,, Birkhäuser, (1996).  doi: 10.1007/978-1-4612-4146-1.  Google Scholar

[41]

T. F. Wu, Two coupled nonlinear Schrödinger equations involving a nonconstant coupling coefficient,, Nonlinear Anal., 75 (2012), 4766.  doi: 10.1016/j.na.2012.03.027.  Google Scholar

show all references

References:
[1]

S. Adachi, A positive solution of a nonhomogeneous elliptic equation in $\mathbbR^N$ with G-invariant nonlinearity,, Comm. Partial Differential Equations, 27 (2002), 1.  doi: 10.1081/PDE-120002781.  Google Scholar

[2]

N. Akhmediev and A. Ankiewicz, Partially coherent solitons on a finite background,, Phys. Rev. Lett., 82 (1999), 2661.  doi: 10.1103/PhysRevLett.82.2661.  Google Scholar

[3]

A. Ambrosetti, G. Cerami and D. Ruiz, Solitons of linearly coupled systems of semilinear non-autonomous equations on $\mathbb R^n$,, J. Funct. Anal., 254 (2008), 2816.  doi: 10.1016/j.jfa.2007.11.013.  Google Scholar

[4]

A. Ambrosetti and E. Colorado, Bound and ground states of coupled nonlinear Schrödinger equations,, C. R. Math. Acad. Sci. Paris, 342 (2006), 453.  doi: 10.1016/j.crma.2006.01.024.  Google Scholar

[5]

A. Ambrosetti and E. Colorado, Standing waves of some coupled nonlinear Schrödinger equations,, J. London Math. Soc., 75 (2007), 67.  doi: 10.1112/jlms/jdl020.  Google Scholar

[6]

A. Bahri and Y. Y. Li, On the min-max procedure for the existence of a positive solution for certain scalar field equations in $\mathbb R^N$,, Rev. Mat. Iberoamericana, 6 (1990), 1.  doi: 10.4171/RMI/92.  Google Scholar

[7]

A. Bahri and P. L. Lions, On the existence of a positive solution of semilinear elliptic equations in unbounded domains,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 14 (1997), 365.  doi: 10.1016/S0294-1449(97)80142-4.  Google Scholar

[8]

T. Bartsch, E. N. Dancer and Z.-Q. Wang, A Liouville theorem, a-priori bounds, and bifurcating branches of positive solutions for a nonlinear elliptic system,, Calc. Var. Partial Differential Equations, 37 (2010), 345.  doi: 10.1007/s00526-009-0265-y.  Google Scholar

[9]

T. Bartsch and Z.-Q. Wang, Note on ground states of nonlinear Schrédinger systems,, J. Partial Differential Equations, 19 (2006), 200.   Google Scholar

[10]

T. Bartsch, Z.-Q. Wang and J.C. Wei, Bound states for a coupled Schrödinger system,, J. Fixed Point Theory Appl., 2 (2007), 353.  doi: 10.1007/s11784-007-0033-6.  Google Scholar

[11]

V. Benci and G. Cerami, Positive solutions of some nonlinear elliptic problems in exterior domain,, Arch. Rational Mech. Anal., 99 (1987), 283.  doi: 10.1007/BF00282048.  Google Scholar

[12]

H. Brezis, On a characterization of flow invariant sets,, Comm. Pure Appl. Math., 23 (1970), 261.  doi: 10.1002/cpa.3160230211.  Google Scholar

[13]

H. Brezis and E. Lieb, A relation between pointwise convergence of functions and convergence of functionals,, Proc. Amer. Math. Soc., 88 (1983), 486.  doi: 10.1090/S0002-9939-1983-0699419-3.  Google Scholar

[14]

E. N. Dancer, J. C. Wei and T. Weth, A priori bounds versus multiple existence of positive solutions for a nonlinear Schrödinger system,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 953.  doi: 10.1016/j.anihpc.2010.01.009.  Google Scholar

[15]

K. Deimling, Ordinary Differential Equations in Banach Spaces,, Lecture Notes in Math., (1977).   Google Scholar

[16]

W. Y. Ding and W. M. Ni, On the existence of positive entire solutions of a semilinear elliptic equations,, Arch. Rational Mech. Anal., 91 (1986), 283.  doi: 10.1007/BF00282336.  Google Scholar

[17]

B. Gidas, W. M. Ni and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in $\mathbbR^n$,, in Mathematical Analysis and Applications, (1981), 369.   Google Scholar

[18]

F. T. Hioe, Solitary waves for two and three coupled nonlinear Schrödinger equations,, Phys. Rev. E, 58 (1998), 6700.  doi: 10.1103/PhysRevE.58.6700.  Google Scholar

[19]

F. T. Hioe, Solitary waves for $N$ coupled nonlinear Schrödinger equations,, Phys. Rev. Lett., 82 (1999), 1152.   Google Scholar

[20]

F. T. Hioe and T. S. Salter, Special set and solutions of coupled nonlinear Schrödinger equations,, J. Phys. A: Math. Gen., 35 (2002), 8913.  doi: 10.1088/0305-4470/35/42/303.  Google Scholar

[21]

J. Hirata, A positive solution of a nonlinear Schrödinger equation with $G$-symmetry,, Nonlinear Anal., 69 (2008), 3174.  doi: 10.1016/j.na.2007.09.010.  Google Scholar

[22]

M. K. Kwong, Uniqueness of positive solutions of $\Delta u-u+u^p=0$ in $\mathbbR^n$,, Arch. Rational Mech. Anal., 105 (1989), 243.  doi: 10.1007/BF00251502.  Google Scholar

[23]

L. S. Lin, Z. L. Liu and S. W. Chen, Multi-bump solutions for a semilinear Schrödinger equation,, Indiana Univ. Math. J., 58 (2009), 1659.  doi: 10.1512/iumj.2009.58.3611.  Google Scholar

[24]

T.-C. Lin and J. C. Wei, Ground state of $N$ coupled nonlinear Schrödinger equations in $\mathbbR^n,\ n\leq 3$,, Comm. Math. Phys., 255 (2005), 629.  doi: 10.1007/s00220-005-1313-x.  Google Scholar

[25]

P. L. Lions, The concentration-compactness principle in the calculus of variations, the locally compact case, part 1,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 109.   Google Scholar

[26]

H. D. Liu and Z. L. Liu, Ground states of a nonlinear Schrödinger system with nonconstant potentials,, Sci. China Math., 58 (2015), 257.  doi: 10.1007/s11425-014-4914-z.  Google Scholar

[27]

Z. L. Liu and Z.-Q. Wang, Multiple bound states of nonlinear Schrödinger systems,, Comm. Math. Phys., 282 (2008), 721.  doi: 10.1007/s00220-008-0546-x.  Google Scholar

[28]

Z. L. Liu and Z.-Q. Wang, Ground states and bound states of a nonlinear Schrödinger system,, Adv. Nonlinear Studies, 10 (2010), 175.   Google Scholar

[29]

L. A. Maia, E. Montefusco and B. Pellacci, Positive solutions for a weakly coupled nonlinear Schrödinger system,, J. Differential Equations, 229 (2006), 743.  doi: 10.1016/j.jde.2006.07.002.  Google Scholar

[30]

L. A. Maia, E. Montefusco and B. Pellacci, Infinitely many nodal solutions for a weakly coupled nonlinear Schrödinger system,, Comm. Contemp. Math., 10 (2008), 651.  doi: 10.1142/S0219199708002934.  Google Scholar

[31]

R. S. Palais, The principle of symmetric criticality,, Comm. Math. Phys., 69 (1979), 19.  doi: 10.1007/BF01941322.  Google Scholar

[32]

A. Pomponio, Coupled nonlinear Schrödinger systems with potentials,, J. Differential Equations, 227 (2006), 258.  doi: 10.1016/j.jde.2005.09.002.  Google Scholar

[33]

Y. Sato and Z.-Q. Wang, On the multiple existence of semi-positive solutions for a nonlinear Schrödinger system,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 30 (2013), 1.  doi: 10.1016/j.anihpc.2012.05.002.  Google Scholar

[34]

B. Sirakov, Least energy solitary waves for a system of nonlinear Schrödinger equations in $\mathbbR^n$,, Comm. Math. Phys., 271 (2007), 199.  doi: 10.1007/s00220-006-0179-x.  Google Scholar

[35]

R. S. Tian and Z.-Q. Wang, Multiple solitary wave solutions of nonlinear Schrödinger systems,, Topol. Methods Nonlinear Anal., 37 (2011), 203.   Google Scholar

[36]

E. Timmermans, Phase separation of Bose-Einstein condensates,, Phys. Rev. Lett., 81 (1998), 5718.  doi: 10.1103/PhysRevLett.81.5718.  Google Scholar

[37]

J. C. Wei and T. Weth, Nonradial symmetric bound states for a system of two coupled Schrödinger equations,, Rend. Lincei Mat. Appl., 18 (2007), 279.  doi: 10.4171/RLM/495.  Google Scholar

[38]

J. C. Wei and T. Weth, Radial solutions and phase seperation in a system of two coupled Schrödinger equations,, Arch. Rational Mech. Anal., 190 (2008), 83.  doi: 10.1007/s00205-008-0121-9.  Google Scholar

[39]

J. C. Wei and W. Yao, Uniqueness of positive solutions to some coupled nonlinear Schrödinger equations,, Comm. Pure Appl. Anal., 11 (2012), 1003.  doi: 10.3934/cpaa.2012.11.1003.  Google Scholar

[40]

M. Willem, Minimax Theorems,, Birkhäuser, (1996).  doi: 10.1007/978-1-4612-4146-1.  Google Scholar

[41]

T. F. Wu, Two coupled nonlinear Schrödinger equations involving a nonconstant coupling coefficient,, Nonlinear Anal., 75 (2012), 4766.  doi: 10.1016/j.na.2012.03.027.  Google Scholar

[1]

Noboru Okazawa, Toshiyuki Suzuki, Tomomi Yokota. Energy methods for abstract nonlinear Schrödinger equations. Evolution Equations & Control Theory, 2012, 1 (2) : 337-354. doi: 10.3934/eect.2012.1.337

[2]

Shalva Amiranashvili, Raimondas  Čiegis, Mindaugas Radziunas. Numerical methods for a class of generalized nonlinear Schrödinger equations. Kinetic & Related Models, 2015, 8 (2) : 215-234. doi: 10.3934/krm.2015.8.215

[3]

Yohei Yamazaki. Transverse instability for a system of nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - B, 2014, 19 (2) : 565-588. doi: 10.3934/dcdsb.2014.19.565

[4]

Yanqin Fang, Jihui Zhang. Multiplicity of solutions for the nonlinear Schrödinger-Maxwell system. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1267-1279. doi: 10.3934/cpaa.2011.10.1267

[5]

Chuangye Liu, Zhi-Qiang Wang. A complete classification of ground-states for a coupled nonlinear Schrödinger system. Communications on Pure & Applied Analysis, 2017, 16 (1) : 115-130. doi: 10.3934/cpaa.2017005

[6]

Chunhua Li. Decay of solutions for a system of nonlinear Schrödinger equations in 2D. Discrete & Continuous Dynamical Systems - A, 2012, 32 (12) : 4265-4285. doi: 10.3934/dcds.2012.32.4265

[7]

Chunhua Wang, Jing Yang. Positive solutions for a nonlinear Schrödinger-Poisson system. Discrete & Continuous Dynamical Systems - A, 2018, 38 (11) : 5461-5504. doi: 10.3934/dcds.2018241

[8]

Christopher Chong, Dmitry Pelinovsky. Variational approximations of bifurcations of asymmetric solitons in cubic-quintic nonlinear Schrödinger lattices. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : 1019-1031. doi: 10.3934/dcdss.2011.4.1019

[9]

Xing-Bin Pan. Variational and operator methods for Maxwell-Stokes system. Discrete & Continuous Dynamical Systems - A, 2019, 0 (0) : 0-0. doi: 10.3934/dcds.2020036

[10]

Zalman Balanov, Carlos García-Azpeitia, Wieslaw Krawcewicz. On variational and topological methods in nonlinear difference equations. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2813-2844. doi: 10.3934/cpaa.2018133

[11]

D.G. deFigueiredo, Yanheng Ding. Solutions of a nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2002, 8 (3) : 563-584. doi: 10.3934/dcds.2002.8.563

[12]

M. D. Todorov, C. I. Christov. Collision dynamics of circularly polarized solitons in nonintegrable coupled nonlinear Schrödinger system. Conference Publications, 2009, 2009 (Special) : 780-789. doi: 10.3934/proc.2009.2009.780

[13]

Weiwei Ao, Liping Wang, Wei Yao. Infinitely many solutions for nonlinear Schrödinger system with non-symmetric potentials. Communications on Pure & Applied Analysis, 2016, 15 (3) : 965-989. doi: 10.3934/cpaa.2016.15.965

[14]

Qiangchang Ju, Fucai Li, Hailiang Li. Asymptotic limit of nonlinear Schrödinger-Poisson system with general initial data. Kinetic & Related Models, 2011, 4 (3) : 767-783. doi: 10.3934/krm.2011.4.767

[15]

Nghiem V. Nguyen, Zhi-Qiang Wang. Existence and stability of a two-parameter family of solitary waves for a 2-coupled nonlinear Schrödinger system. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 1005-1021. doi: 10.3934/dcds.2016.36.1005

[16]

Hiroyuki Hirayama. Well-posedness and scattering for a system of quadratic derivative nonlinear Schrödinger equations with low regularity initial data. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1563-1591. doi: 10.3934/cpaa.2014.13.1563

[17]

Zhengping Wang, Huan-Song Zhou. Positive solution for a nonlinear stationary Schrödinger-Poisson system in $R^3$. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 809-816. doi: 10.3934/dcds.2007.18.809

[18]

Olivier Goubet, Marilena N. Poulou. Semi discrete weakly damped nonlinear Klein-Gordon Schrödinger system. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1525-1539. doi: 10.3934/cpaa.2014.13.1525

[19]

Jianqing Chen. Sharp variational characterization and a Schrödinger equation with Hartree type nonlinearity. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 1613-1628. doi: 10.3934/dcdss.2016066

[20]

Jianqing Chen. A variational argument to finding global solutions of a quasilinear Schrödinger equation. Communications on Pure & Applied Analysis, 2008, 7 (1) : 83-88. doi: 10.3934/cpaa.2008.7.83

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (25)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]