-
Previous Article
On the existence of global strong solutions to the equations modeling a motion of a rigid body around a viscous fluid
- DCDS Home
- This Issue
-
Next Article
Young towers for product systems
One smoothing property of the scattering map of the KdV on $\mathbb{R}$
1. | Department of Mathematics, Università la Sapienza Roma, Piazzale Aldo Moro, 5, 00185 Rome, Italy |
2. | Department of Mathematics, University of Kansas, 405 Snow Hall, 1460 Jayhawk Blvd, Lawrence, Kansas 66045-7594, United States |
References:
[1] |
M. Ablowitz and P. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering, Cambridge University Press, Cambridge, 1991.
doi: 10.1017/CBO9780511623998. |
[2] |
M. Ablowitz, D. Kaup, A. Newell and H. Segur, The inverse scattering transform-Fourier analysis for nonlinear problems, Studies in Appl. Math., 53 (1974), 249-315. |
[3] |
A. Babin, A. Ilyin and E. Titi, On the regularization mechanism for the periodic Korteweg-de Vries equation, Comm. Pure Appl. Math., 64 (2011), 591-648.
doi: 10.1002/cpa.20356. |
[4] |
H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, New York, 2011. |
[5] |
J. Bona and R. Smith, The initial-value problem for the Korteweg-de Vries equation, Philos. Trans. Roy. Soc. London Ser. A, 278 (1975), 555-601.
doi: 10.1098/rsta.1975.0035. |
[6] |
A. Calderón, Commutators of singular integral operators, Proc. Nat. Acad. Sci. U.S.A., 53 (1965), 1092-1099.
doi: 10.1073/pnas.53.5.1092. |
[7] |
A. Cohen and T. Kappeler, The asymptotic behavior of solutions of the Korteweg-de Vries equation evolving from very irregular data, Ann. Physics, 178 (1987), 144-185.
doi: 10.1016/S0003-4916(87)80016-7. |
[8] |
A. Cohen and T. Kappeler, Solutions to the Korteweg-de Vries equation with initial profile in $L^1_1(R) \cap L^1_N(R^+)$, SIAM J. Math. Anal., 18 (1987), 991-1025.
doi: 10.1137/0518076. |
[9] |
J. Colliander, G. Staffilani and H. Takaoka, Global wellposedness for KDV below $L^2$, Mathematical Research Letters, 6 (1999), 755-778.
doi: 10.4310/MRL.1999.v6.n6.a13. |
[10] |
P. Deift and E. Trubowitz, Inverse scattering on the line, Comm. Pure Appl. Math., 32 (1979), 121-251.
doi: 10.1002/cpa.3160320202. |
[11] |
M. Erdoğan and N. Tzirakis, Global smoothing for the periodic KdV evolution, Int. Math. Res. Not. IMRN, 20 (2013), 4589-4614. |
[12] |
M. Erdoğan and N. Tzirakis, Long time dynamics for forced and weakly damped KdV on the torus, Commun. Pure Appl. Anal., 12 (2013), 2669-2684.
doi: 10.3934/cpaa.2013.12.2669. |
[13] |
L. Faddeev, Properties of the $S$-matrix of the one-dimensional Schrödinger equation, Trudy Mat. Inst. Steklov., 73 (1964), 314-336. |
[14] |
L. Faddeev and L. Takhtajan, Hamiltonian Methods in the Theory of Solitons, Springer Series in Soviet Mathematics, Springer-Verlag, Berlin, 1987.
doi: 10.1007/978-3-540-69969-9. |
[15] |
C. Frayer, R. Hryniv, Ya. Mykytyuk and P. Perry, Inverse scattering for Schrödinger operators with Miura potentials. I. Unique Riccati representatives and ZS-AKNS systems, Inverse Problems, 25 (2009), 115007, 25pp.
doi: 10.1088/0266-5611/25/11/115007. |
[16] |
H. Flaschka, On the Toda lattice. II. Inverse-scattering solution, Progr. Theoret. Phys., 51 (1974), 703-716.
doi: 10.1143/PTP.51.703. |
[17] |
C. Gardner, J. Greene, M. Kruskal and R. Miura, Method for Solving the Korteweg-deVries Equation, Physical Review Letters, 19 (1967), 1095-1097. |
[18] |
C. Gardner, J. Greene, M. Kruskal and R. Miura, Korteweg-deVries equation and generalization. VI. Methods for exact solution, Comm. Pure Appl. Math., 27 (1974), 97-133.
doi: 10.1002/cpa.3160270108. |
[19] |
B. Grébert and T. Kappeler, The Defocusing NLS Equation and its Normal Form, European Mathematical Society, Zürich, 2014.
doi: 10.4171/131. |
[20] |
R. Hryniv, Y. Mykytyuk and P. Perry, Sobolev mapping properties of the scattering transform for the Schrödinger equation, in Spectral theory and geometric analysis, 535 (2011), 79-93.
doi: 10.1090/conm/535/10536. |
[21] |
T. Kappeler, Inverse scattering for scattering data with poor regularity or slow decay, J. Integral Equations Appl., 1 (1988), 123-145.
doi: 10.1216/JIE-1988-1-1-123. |
[22] |
T. Kappeler, P. Lohrmann, P. Topalov and N. T. Zung, Birkhoff coordinates for the focusing NLS equation, Comm. Math. Phys., 285 (2009), 1087-1107.
doi: 10.1007/s00220-008-0543-0. |
[23] |
T. Kappeler and J. Pöschel, KdV & KAM, Springer-Verlag, Berlin, 2003.
doi: 10.1007/978-3-662-08054-2. |
[24] |
T. Kappeler, B. Schaad and P. Topalov, Asymptotics of spectral quantities of Schrödinger operators, in Spectral Geometry, 84, Amer. Math. Soc., Providence, 2012, 243-284.
doi: 10.1090/pspum/084/1360. |
[25] |
T. Kappeler, B. Schaad and P. Topalov, Qualitative features of periodic solutions of KdV, Comm. Partial Differential Equations, 38 (2013), 1626-1673.
doi: 10.1080/03605302.2013.814141. |
[26] |
T. Kappeler and E. Trubowitz, Properties of the scattering map, Comment. Math. Helv., 61 (1986), 442-480.
doi: 10.1007/BF02621927. |
[27] |
T. Kappeler and E. Trubowitz, Properties of the scattering map, II, Comment. Math. Helv., 63 (1988), 150-167.
doi: 10.1007/BF02566758. |
[28] |
T. Kato, On the Korteweg-de Vries equation, Manuscripta Math., 28 (1979), 89-99.
doi: 10.1007/BF01647967. |
[29] |
T. Kato, On the Cauchy problem for the (generalized) Korteweg-de Vries equation, in Studies in Applied Mathematics, 8, Academic Press, 1983, 93-128. |
[30] |
C. Kenig, G. Ponce and L. Vega, Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle, Comm. Pure Appl. Math., 46 (1993), 527-620.
doi: 10.1002/cpa.3160460405. |
[31] |
S. Kuksin, Damped-driven KdV and effective equations for long-time behaviour of its solutions, Geom. Funct. Anal., 20 (2010), 1431-1463.
doi: 10.1007/s00039-010-0103-6. |
[32] |
S. Kuksin and G. Perelman, Vey theorem in infinite dimensions and its application to KdV, Discrete Contin. Dyn. Syst., 27 (2010), 1-24.
doi: 10.3934/dcds.2010.27.1. |
[33] |
V. Marchenko, Sturm-Liouville Operators and Applications, Birkhäuser, Basel, 1986.
doi: 10.1007/978-3-0348-5485-6. |
[34] |
A. Maspero and B. Schaad, One smoothing property of the scattering map of the KdV on $\mathbb R$, arXiv:1412.3268. |
[35] |
D. McLaughlin, Erratum: Four examples of the inverse method as a canonical transformation, Journal of Mathematical Physics, 16 (1975), 1704-1704. |
[36] |
D. McLaughlin, Four examples of the inverse method as a canonical transformation, Journal of Mathematical Physics, 16 (1975), 96-99.
doi: 10.1063/1.522391. |
[37] |
J. Mujica, Complex Analysis in Banach Spaces, North-Holland Publishing Co., Amsterdam, 1986. |
[38] |
J. Nahas and G. Ponce, On the persistent properties of solutions to semi-linear Schrödinger equation, Comm. Partial Differential Equations, 34 (2009), 1208-1227.
doi: 10.1080/03605300903129044. |
[39] |
S. Novikov, S. Manakov, L. Pitaevskiĭ and V. Zakharov, Theory of Solitons, Consultants Bureau [Plenum], New York, 1984. |
[40] |
R. Novikov, Inverse scattering up to smooth functions for the Schrödinger equation in dimension $1$, Bull. Sci. Math., 120 (1996), 473-491. |
[41] |
V. Zakharov and L. Faddeev, Korteweg-de vries equation: A completely integrable hamiltonian system, Functional Analysis and Its Applications, 5 (1971), 280-287.
doi: 10.1007/BF01086739. |
[42] |
V. Zaharov and S. Manakov, The complete integrability of the nonlinear Schrödinger equation, Teoret. Mat. Fiz., 19 (1974), 332-343. |
[43] |
V. Zakharov and A. Shabat, Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media, Ž. Èksper. Teoret. Fiz., 61 (1971), 118-134. |
[44] |
X. Zhou, $L^2$-Sobolev space bijectivity of the scattering and inverse scattering transforms, Comm. Pure Appl. Math., 51 (1998), 697-731.
doi: 10.1002/(SICI)1097-0312(199807)51:7<697::AID-CPA1>3.0.CO;2-1. |
show all references
References:
[1] |
M. Ablowitz and P. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering, Cambridge University Press, Cambridge, 1991.
doi: 10.1017/CBO9780511623998. |
[2] |
M. Ablowitz, D. Kaup, A. Newell and H. Segur, The inverse scattering transform-Fourier analysis for nonlinear problems, Studies in Appl. Math., 53 (1974), 249-315. |
[3] |
A. Babin, A. Ilyin and E. Titi, On the regularization mechanism for the periodic Korteweg-de Vries equation, Comm. Pure Appl. Math., 64 (2011), 591-648.
doi: 10.1002/cpa.20356. |
[4] |
H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, New York, 2011. |
[5] |
J. Bona and R. Smith, The initial-value problem for the Korteweg-de Vries equation, Philos. Trans. Roy. Soc. London Ser. A, 278 (1975), 555-601.
doi: 10.1098/rsta.1975.0035. |
[6] |
A. Calderón, Commutators of singular integral operators, Proc. Nat. Acad. Sci. U.S.A., 53 (1965), 1092-1099.
doi: 10.1073/pnas.53.5.1092. |
[7] |
A. Cohen and T. Kappeler, The asymptotic behavior of solutions of the Korteweg-de Vries equation evolving from very irregular data, Ann. Physics, 178 (1987), 144-185.
doi: 10.1016/S0003-4916(87)80016-7. |
[8] |
A. Cohen and T. Kappeler, Solutions to the Korteweg-de Vries equation with initial profile in $L^1_1(R) \cap L^1_N(R^+)$, SIAM J. Math. Anal., 18 (1987), 991-1025.
doi: 10.1137/0518076. |
[9] |
J. Colliander, G. Staffilani and H. Takaoka, Global wellposedness for KDV below $L^2$, Mathematical Research Letters, 6 (1999), 755-778.
doi: 10.4310/MRL.1999.v6.n6.a13. |
[10] |
P. Deift and E. Trubowitz, Inverse scattering on the line, Comm. Pure Appl. Math., 32 (1979), 121-251.
doi: 10.1002/cpa.3160320202. |
[11] |
M. Erdoğan and N. Tzirakis, Global smoothing for the periodic KdV evolution, Int. Math. Res. Not. IMRN, 20 (2013), 4589-4614. |
[12] |
M. Erdoğan and N. Tzirakis, Long time dynamics for forced and weakly damped KdV on the torus, Commun. Pure Appl. Anal., 12 (2013), 2669-2684.
doi: 10.3934/cpaa.2013.12.2669. |
[13] |
L. Faddeev, Properties of the $S$-matrix of the one-dimensional Schrödinger equation, Trudy Mat. Inst. Steklov., 73 (1964), 314-336. |
[14] |
L. Faddeev and L. Takhtajan, Hamiltonian Methods in the Theory of Solitons, Springer Series in Soviet Mathematics, Springer-Verlag, Berlin, 1987.
doi: 10.1007/978-3-540-69969-9. |
[15] |
C. Frayer, R. Hryniv, Ya. Mykytyuk and P. Perry, Inverse scattering for Schrödinger operators with Miura potentials. I. Unique Riccati representatives and ZS-AKNS systems, Inverse Problems, 25 (2009), 115007, 25pp.
doi: 10.1088/0266-5611/25/11/115007. |
[16] |
H. Flaschka, On the Toda lattice. II. Inverse-scattering solution, Progr. Theoret. Phys., 51 (1974), 703-716.
doi: 10.1143/PTP.51.703. |
[17] |
C. Gardner, J. Greene, M. Kruskal and R. Miura, Method for Solving the Korteweg-deVries Equation, Physical Review Letters, 19 (1967), 1095-1097. |
[18] |
C. Gardner, J. Greene, M. Kruskal and R. Miura, Korteweg-deVries equation and generalization. VI. Methods for exact solution, Comm. Pure Appl. Math., 27 (1974), 97-133.
doi: 10.1002/cpa.3160270108. |
[19] |
B. Grébert and T. Kappeler, The Defocusing NLS Equation and its Normal Form, European Mathematical Society, Zürich, 2014.
doi: 10.4171/131. |
[20] |
R. Hryniv, Y. Mykytyuk and P. Perry, Sobolev mapping properties of the scattering transform for the Schrödinger equation, in Spectral theory and geometric analysis, 535 (2011), 79-93.
doi: 10.1090/conm/535/10536. |
[21] |
T. Kappeler, Inverse scattering for scattering data with poor regularity or slow decay, J. Integral Equations Appl., 1 (1988), 123-145.
doi: 10.1216/JIE-1988-1-1-123. |
[22] |
T. Kappeler, P. Lohrmann, P. Topalov and N. T. Zung, Birkhoff coordinates for the focusing NLS equation, Comm. Math. Phys., 285 (2009), 1087-1107.
doi: 10.1007/s00220-008-0543-0. |
[23] |
T. Kappeler and J. Pöschel, KdV & KAM, Springer-Verlag, Berlin, 2003.
doi: 10.1007/978-3-662-08054-2. |
[24] |
T. Kappeler, B. Schaad and P. Topalov, Asymptotics of spectral quantities of Schrödinger operators, in Spectral Geometry, 84, Amer. Math. Soc., Providence, 2012, 243-284.
doi: 10.1090/pspum/084/1360. |
[25] |
T. Kappeler, B. Schaad and P. Topalov, Qualitative features of periodic solutions of KdV, Comm. Partial Differential Equations, 38 (2013), 1626-1673.
doi: 10.1080/03605302.2013.814141. |
[26] |
T. Kappeler and E. Trubowitz, Properties of the scattering map, Comment. Math. Helv., 61 (1986), 442-480.
doi: 10.1007/BF02621927. |
[27] |
T. Kappeler and E. Trubowitz, Properties of the scattering map, II, Comment. Math. Helv., 63 (1988), 150-167.
doi: 10.1007/BF02566758. |
[28] |
T. Kato, On the Korteweg-de Vries equation, Manuscripta Math., 28 (1979), 89-99.
doi: 10.1007/BF01647967. |
[29] |
T. Kato, On the Cauchy problem for the (generalized) Korteweg-de Vries equation, in Studies in Applied Mathematics, 8, Academic Press, 1983, 93-128. |
[30] |
C. Kenig, G. Ponce and L. Vega, Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle, Comm. Pure Appl. Math., 46 (1993), 527-620.
doi: 10.1002/cpa.3160460405. |
[31] |
S. Kuksin, Damped-driven KdV and effective equations for long-time behaviour of its solutions, Geom. Funct. Anal., 20 (2010), 1431-1463.
doi: 10.1007/s00039-010-0103-6. |
[32] |
S. Kuksin and G. Perelman, Vey theorem in infinite dimensions and its application to KdV, Discrete Contin. Dyn. Syst., 27 (2010), 1-24.
doi: 10.3934/dcds.2010.27.1. |
[33] |
V. Marchenko, Sturm-Liouville Operators and Applications, Birkhäuser, Basel, 1986.
doi: 10.1007/978-3-0348-5485-6. |
[34] |
A. Maspero and B. Schaad, One smoothing property of the scattering map of the KdV on $\mathbb R$, arXiv:1412.3268. |
[35] |
D. McLaughlin, Erratum: Four examples of the inverse method as a canonical transformation, Journal of Mathematical Physics, 16 (1975), 1704-1704. |
[36] |
D. McLaughlin, Four examples of the inverse method as a canonical transformation, Journal of Mathematical Physics, 16 (1975), 96-99.
doi: 10.1063/1.522391. |
[37] |
J. Mujica, Complex Analysis in Banach Spaces, North-Holland Publishing Co., Amsterdam, 1986. |
[38] |
J. Nahas and G. Ponce, On the persistent properties of solutions to semi-linear Schrödinger equation, Comm. Partial Differential Equations, 34 (2009), 1208-1227.
doi: 10.1080/03605300903129044. |
[39] |
S. Novikov, S. Manakov, L. Pitaevskiĭ and V. Zakharov, Theory of Solitons, Consultants Bureau [Plenum], New York, 1984. |
[40] |
R. Novikov, Inverse scattering up to smooth functions for the Schrödinger equation in dimension $1$, Bull. Sci. Math., 120 (1996), 473-491. |
[41] |
V. Zakharov and L. Faddeev, Korteweg-de vries equation: A completely integrable hamiltonian system, Functional Analysis and Its Applications, 5 (1971), 280-287.
doi: 10.1007/BF01086739. |
[42] |
V. Zaharov and S. Manakov, The complete integrability of the nonlinear Schrödinger equation, Teoret. Mat. Fiz., 19 (1974), 332-343. |
[43] |
V. Zakharov and A. Shabat, Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media, Ž. Èksper. Teoret. Fiz., 61 (1971), 118-134. |
[44] |
X. Zhou, $L^2$-Sobolev space bijectivity of the scattering and inverse scattering transforms, Comm. Pure Appl. Math., 51 (1998), 697-731.
doi: 10.1002/(SICI)1097-0312(199807)51:7<697::AID-CPA1>3.0.CO;2-1. |
[1] |
Álvaro Pelayo, San Vű Ngọc. First steps in symplectic and spectral theory of integrable systems. Discrete and Continuous Dynamical Systems, 2012, 32 (10) : 3325-3377. doi: 10.3934/dcds.2012.32.3325 |
[2] |
Alexei Rybkin. On the boundary control approach to inverse spectral and scattering theory for Schrödinger operators. Inverse Problems and Imaging, 2009, 3 (1) : 139-149. doi: 10.3934/ipi.2009.3.139 |
[3] |
Raphael Stuhlmeier. KdV theory and the Chilean tsunami of 1960. Discrete and Continuous Dynamical Systems - B, 2009, 12 (3) : 623-632. doi: 10.3934/dcdsb.2009.12.623 |
[4] |
Rémi Leclercq. Spectral invariants in Lagrangian Floer theory. Journal of Modern Dynamics, 2008, 2 (2) : 249-286. doi: 10.3934/jmd.2008.2.249 |
[5] |
Barry Simon. Equilibrium measures and capacities in spectral theory. Inverse Problems and Imaging, 2007, 1 (4) : 713-772. doi: 10.3934/ipi.2007.1.713 |
[6] |
Valery Imaikin, Alexander Komech, Herbert Spohn. Scattering theory for a particle coupled to a scalar field. Discrete and Continuous Dynamical Systems, 2004, 10 (1&2) : 387-396. doi: 10.3934/dcds.2004.10.387 |
[7] |
Fioralba Cakoni, Shixu Meng, Jingni Xiao. A note on transmission eigenvalues in electromagnetic scattering theory. Inverse Problems and Imaging, 2021, 15 (5) : 999-1014. doi: 10.3934/ipi.2021025 |
[8] |
Krešimir Burazin, Marko Vrdoljak. Homogenisation theory for Friedrichs systems. Communications on Pure and Applied Analysis, 2014, 13 (3) : 1017-1044. doi: 10.3934/cpaa.2014.13.1017 |
[9] |
Wilhelm Schlag. Spectral theory and nonlinear partial differential equations: A survey. Discrete and Continuous Dynamical Systems, 2006, 15 (3) : 703-723. doi: 10.3934/dcds.2006.15.703 |
[10] |
Robert Carlson. Spectral theory for nonconservative transmission line networks. Networks and Heterogeneous Media, 2011, 6 (2) : 257-277. doi: 10.3934/nhm.2011.6.257 |
[11] |
Xiongping Dai, Yu Huang, Mingqing Xiao. Realization of joint spectral radius via Ergodic theory. Electronic Research Announcements, 2011, 18: 22-30. doi: 10.3934/era.2011.18.22 |
[12] |
Kung-Ching Chang, Xuefeng Wang, Xie Wu. On the spectral theory of positive operators and PDE applications. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3171-3200. doi: 10.3934/dcds.2020054 |
[13] |
Leonid Golinskii, Mikhail Kudryavtsev. An inverse spectral theory for finite CMV matrices. Inverse Problems and Imaging, 2010, 4 (1) : 93-110. doi: 10.3934/ipi.2010.4.93 |
[14] |
Hung-Wen Kuo. Effect of abrupt change of the wall temperature in the kinetic theory. Kinetic and Related Models, 2019, 12 (4) : 765-789. doi: 10.3934/krm.2019030 |
[15] |
Manfred Deistler. Singular arma systems: A structure theory. Numerical Algebra, Control and Optimization, 2019, 9 (3) : 383-391. doi: 10.3934/naco.2019025 |
[16] |
Kirill D. Cherednichenko, Alexander V. Kiselev, Luis O. Silva. Functional model for extensions of symmetric operators and applications to scattering theory. Networks and Heterogeneous Media, 2018, 13 (2) : 191-215. doi: 10.3934/nhm.2018009 |
[17] |
Deyue Zhang, Yukun Guo. Some recent developments in the unique determinations in phaseless inverse acoustic scattering theory. Electronic Research Archive, 2021, 29 (2) : 2149-2165. doi: 10.3934/era.2020110 |
[18] |
Jeremy L. Marzuola. Dispersive estimates using scattering theory for matrix Hamiltonian equations. Discrete and Continuous Dynamical Systems, 2011, 30 (4) : 995-1035. doi: 10.3934/dcds.2011.30.995 |
[19] |
Changxing Miao, Jiqiang Zheng. Scattering theory for energy-supercritical Klein-Gordon equation. Discrete and Continuous Dynamical Systems - S, 2016, 9 (6) : 2073-2094. doi: 10.3934/dcdss.2016085 |
[20] |
Kimitoshi Tsutaya. Scattering theory for the wave equation of a Hartree type in three space dimensions. Discrete and Continuous Dynamical Systems, 2014, 34 (5) : 2261-2281. doi: 10.3934/dcds.2014.34.2261 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]