• Previous Article
    Lipschitz dependence of viscosity solutions of Hamilton-Jacobi equations with respect to the parameter
  • DCDS Home
  • This Issue
  • Next Article
    Infinitely many solutions for an elliptic problem with double critical Hardy-Sobolev-Maz'ya terms
March  2016, 36(3): 1629-1647. doi: 10.3934/dcds.2016.36.1629

On the shape Conley index theory of semiflows on complete metric spaces

1. 

Department of Math., School of Science, Tianjin University, Tianjin 300072, China

2. 

Department of Mathematics, School of Science, Tianjin University, Tianjin, 300072

3. 

Department of Applied Math., Illinois Institute of Technology, Chicago IL 60616, United States

Received  December 2014 Revised  June 2015 Published  August 2015

In this work we develop the shape Conley index theory for local semiflows on complete metric spaces by using a weaker notion of shape index pairs. This allows us to calculate the shape index of a compact isolated invariant set $K$ by restricting the system on any closed subset that contains a local unstable manifold of $K$, and hence significantly increases the flexibility of the calculation of shape indices and Morse equations. In particular, it allows to calculate shape indices and Morse equations for an infinite dimensional system by using only the unstable manifolds of the invariant sets, without requiring the system to be two-sided on the unstable manifolds.
Citation: Jintao Wang, Desheng Li, Jinqiao Duan. On the shape Conley index theory of semiflows on complete metric spaces. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1629-1647. doi: 10.3934/dcds.2016.36.1629
References:
[1]

K. Borsuk, Theory of Shape,, Monografie Matematyczne, (1975). Google Scholar

[2]

C. Conley, Isolated Invariant Sets and the Morse Index,, Regional Conference Series in Mathematics, (1978). Google Scholar

[3]

J. Dydak and J. Segal, Shape Theory: An Introduction,, Lecture Notes in Math., (1978). Google Scholar

[4]

A. Giraldo, M. A. Morón, F. R. Ruiz del Portal and J. M. R. Sanjurjo, Shape of global attractors in topological spaces,, Nonlinear Anal., 60 (2005), 837. doi: 10.1016/j.na.2004.03.036. Google Scholar

[5]

A. Giraldo, R. Jiménez, M. A. Morón, F. R. Ruiz del Portal and J. M. R. Sanjurjo, Pointed shape and global attractors for metrizable spaces,, Topology Appl., 158 (2011), 167. doi: 10.1016/j.topol.2010.08.015. Google Scholar

[6]

A. Hatcher, Algebraic Topology,, Cambridge University Press, (2002). Google Scholar

[7]

D. Henry, Geometric Theory of Semilinear Parabolic Equations,, Lecture Notes in Mathematics, (1981). Google Scholar

[8]

L. Kapitanski and I. Rodnianski, Shape and Morse theory of attractors,, Comm. Pure Appl. Math., 53 (2000), 218. doi: 10.1002/(SICI)1097-0312(200002)53:2<218::AID-CPA2>3.0.CO;2-W. Google Scholar

[9]

D. Li, Morse theory of attractors via Lyapunov functions, preprint,, , (). Google Scholar

[10]

D. Li, G. Shi and X. Song, A linking theory for dynamical systems with applications to PDEs,, , (). Google Scholar

[11]

S. Mardešić and J. Segal, Shape Theory - The Inverse System Approach,, North-Holland Mathematical Library, (1982). Google Scholar

[12]

M. Mrozek, Shape index and other indices of Conley type for local maps on locally compact Hausdorff spaces,, Fund. Math., 145 (1994), 15. Google Scholar

[13]

J. W. Robbin and D. Salamon, Dynamical systems, shape theory and the Conley index,, Ergodic Theory Dynam. Systems, 8 (1988), 375. doi: 10.1017/S0143385700009494. Google Scholar

[14]

K. P. Rybakowski, The Homotopy Index and Partial Differential Equations,, Springer-Verlag, (1987). doi: 10.1007/978-3-642-72833-4. Google Scholar

[15]

J. J. Sánchez-Gabites, An approach to the Conley shape index without index pairs,, Rev. Mat. Complut., 24 (2011), 95. doi: 10.1007/s13163-010-0031-x. Google Scholar

[16]

J. M. R. Sanjurjo, Morse equation and unstable manifolds of isolated invariant set,, Nonlinearity, 16 (2003), 1435. doi: 10.1088/0951-7715/16/4/314. Google Scholar

[17]

J. M. R. Sanjurjo, Shape and Conley index of attractors and isolated invariant sets,, Progress Nonlinear Diff. Eqns., 75 (2008), 393. doi: 10.1007/978-3-7643-8482-1_29. Google Scholar

[18]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics,, $2^{nd}$ edition, (1997). doi: 10.1007/978-1-4612-0645-3. Google Scholar

show all references

References:
[1]

K. Borsuk, Theory of Shape,, Monografie Matematyczne, (1975). Google Scholar

[2]

C. Conley, Isolated Invariant Sets and the Morse Index,, Regional Conference Series in Mathematics, (1978). Google Scholar

[3]

J. Dydak and J. Segal, Shape Theory: An Introduction,, Lecture Notes in Math., (1978). Google Scholar

[4]

A. Giraldo, M. A. Morón, F. R. Ruiz del Portal and J. M. R. Sanjurjo, Shape of global attractors in topological spaces,, Nonlinear Anal., 60 (2005), 837. doi: 10.1016/j.na.2004.03.036. Google Scholar

[5]

A. Giraldo, R. Jiménez, M. A. Morón, F. R. Ruiz del Portal and J. M. R. Sanjurjo, Pointed shape and global attractors for metrizable spaces,, Topology Appl., 158 (2011), 167. doi: 10.1016/j.topol.2010.08.015. Google Scholar

[6]

A. Hatcher, Algebraic Topology,, Cambridge University Press, (2002). Google Scholar

[7]

D. Henry, Geometric Theory of Semilinear Parabolic Equations,, Lecture Notes in Mathematics, (1981). Google Scholar

[8]

L. Kapitanski and I. Rodnianski, Shape and Morse theory of attractors,, Comm. Pure Appl. Math., 53 (2000), 218. doi: 10.1002/(SICI)1097-0312(200002)53:2<218::AID-CPA2>3.0.CO;2-W. Google Scholar

[9]

D. Li, Morse theory of attractors via Lyapunov functions, preprint,, , (). Google Scholar

[10]

D. Li, G. Shi and X. Song, A linking theory for dynamical systems with applications to PDEs,, , (). Google Scholar

[11]

S. Mardešić and J. Segal, Shape Theory - The Inverse System Approach,, North-Holland Mathematical Library, (1982). Google Scholar

[12]

M. Mrozek, Shape index and other indices of Conley type for local maps on locally compact Hausdorff spaces,, Fund. Math., 145 (1994), 15. Google Scholar

[13]

J. W. Robbin and D. Salamon, Dynamical systems, shape theory and the Conley index,, Ergodic Theory Dynam. Systems, 8 (1988), 375. doi: 10.1017/S0143385700009494. Google Scholar

[14]

K. P. Rybakowski, The Homotopy Index and Partial Differential Equations,, Springer-Verlag, (1987). doi: 10.1007/978-3-642-72833-4. Google Scholar

[15]

J. J. Sánchez-Gabites, An approach to the Conley shape index without index pairs,, Rev. Mat. Complut., 24 (2011), 95. doi: 10.1007/s13163-010-0031-x. Google Scholar

[16]

J. M. R. Sanjurjo, Morse equation and unstable manifolds of isolated invariant set,, Nonlinearity, 16 (2003), 1435. doi: 10.1088/0951-7715/16/4/314. Google Scholar

[17]

J. M. R. Sanjurjo, Shape and Conley index of attractors and isolated invariant sets,, Progress Nonlinear Diff. Eqns., 75 (2008), 393. doi: 10.1007/978-3-7643-8482-1_29. Google Scholar

[18]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics,, $2^{nd}$ edition, (1997). doi: 10.1007/978-1-4612-0645-3. Google Scholar

[1]

Martin Bauer, Philipp Harms, Peter W. Michor. Sobolev metrics on shape space of surfaces. Journal of Geometric Mechanics, 2011, 3 (4) : 389-438. doi: 10.3934/jgm.2011.3.389

[2]

Martin Bauer, Philipp Harms, Peter W. Michor. Sobolev metrics on shape space, II: Weighted Sobolev metrics and almost local metrics. Journal of Geometric Mechanics, 2012, 4 (4) : 365-383. doi: 10.3934/jgm.2012.4.365

[3]

Zongming Guo, Zhongyuan Liu, Juncheng Wei, Feng Zhou. Bifurcations of some elliptic problems with a singular nonlinearity via Morse index. Communications on Pure & Applied Analysis, 2011, 10 (2) : 507-525. doi: 10.3934/cpaa.2011.10.507

[4]

Philip Korman. Infinitely many solutions and Morse index for non-autonomous elliptic problems. Communications on Pure & Applied Analysis, 2020, 19 (1) : 31-46. doi: 10.3934/cpaa.2020003

[5]

Rafael Ortega. Stability and index of periodic solutions of a nonlinear telegraph equation. Communications on Pure & Applied Analysis, 2005, 4 (4) : 823-837. doi: 10.3934/cpaa.2005.4.823

[6]

Jiaquan Liu, Yuxia Guo, Pingan Zeng. Relationship of the morse index and the $L^\infty$ bound of solutions for a strongly indefinite differential superlinear system. Discrete & Continuous Dynamical Systems - A, 2006, 16 (1) : 107-119. doi: 10.3934/dcds.2006.16.107

[7]

Chiara Corsato, Colette De Coster, Pierpaolo Omari. Radially symmetric solutions of an anisotropic mean curvature equation modeling the corneal shape. Conference Publications, 2015, 2015 (special) : 297-303. doi: 10.3934/proc.2015.0297

[8]

Amin Boumenir. Determining the shape of a solid of revolution. Mathematical Control & Related Fields, 2019, 9 (3) : 509-515. doi: 10.3934/mcrf.2019023

[9]

Litismita Jena, Sabyasachi Pani. Index-range monotonicity and index-proper splittings of matrices. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 379-388. doi: 10.3934/naco.2013.3.379

[10]

Elisa Gorla, Maike Massierer. Index calculus in the trace zero variety. Advances in Mathematics of Communications, 2015, 9 (4) : 515-539. doi: 10.3934/amc.2015.9.515

[11]

Tiexiang Li, Tsung-Ming Huang, Wen-Wei Lin, Jenn-Nan Wang. On the transmission eigenvalue problem for the acoustic equation with a negative index of refraction and a practical numerical reconstruction method. Inverse Problems & Imaging, 2018, 12 (4) : 1033-1054. doi: 10.3934/ipi.2018043

[12]

Kotaro Tsugawa. Existence of the global attractor for weakly damped, forced KdV equation on Sobolev spaces of negative index. Communications on Pure & Applied Analysis, 2004, 3 (2) : 301-318. doi: 10.3934/cpaa.2004.3.301

[13]

Min Liu, Zhongwei Tang. Multiplicity and concentration of solutions for Choquard equation via Nehari method and pseudo-index theory. Discrete & Continuous Dynamical Systems - A, 2019, 39 (6) : 3365-3398. doi: 10.3934/dcds.2019139

[14]

Andrzej Nowakowski, Jan Sokolowski. On dual dynamic programming in shape control. Communications on Pure & Applied Analysis, 2012, 11 (6) : 2473-2485. doi: 10.3934/cpaa.2012.11.2473

[15]

Barbara Kaltenbacher, Gunther Peichl. The shape derivative for an optimization problem in lithotripsy. Evolution Equations & Control Theory, 2016, 5 (3) : 399-430. doi: 10.3934/eect.2016011

[16]

Wenya Ma, Yihang Hao, Xiangao Liu. Shape optimization in compressible liquid crystals. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1623-1639. doi: 10.3934/cpaa.2015.14.1623

[17]

Chiara Corsato, Colette De Coster, Franco Obersnel, Pierpaolo Omari, Alessandro Soranzo. A prescribed anisotropic mean curvature equation modeling the corneal shape: A paradigm of nonlinear analysis. Discrete & Continuous Dynamical Systems - S, 2018, 11 (2) : 213-256. doi: 10.3934/dcdss.2018013

[18]

Alexander V. Rezounenko, Petr Zagalak. Non-local PDEs with discrete state-dependent delays: Well-posedness in a metric space. Discrete & Continuous Dynamical Systems - A, 2013, 33 (2) : 819-835. doi: 10.3934/dcds.2013.33.819

[19]

Ha Pham, Plamen Stefanov. Weyl asymptotics of the transmission eigenvalues for a constant index of refraction. Inverse Problems & Imaging, 2014, 8 (3) : 795-810. doi: 10.3934/ipi.2014.8.795

[20]

Alexander Krasnosel'skii, Jean Mawhin. The index at infinity for some vector fields with oscillating nonlinearities. Discrete & Continuous Dynamical Systems - A, 2000, 6 (1) : 165-174. doi: 10.3934/dcds.2000.6.165

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (21)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]