• Previous Article
    The regularity of sonic curves for the two-dimensional Riemann problems of the nonlinear wave system of Chaplygin gas
  • DCDS Home
  • This Issue
  • Next Article
    On the shape Conley index theory of semiflows on complete metric spaces
March  2016, 36(3): 1649-1659. doi: 10.3934/dcds.2016.36.1649

Lipschitz dependence of viscosity solutions of Hamilton-Jacobi equations with respect to the parameter

1. 

Department of Mathematics, Shanghai Jiao Tong University, Shanghai 200240, China

2. 

School of Mathematical Sciences, Fudan University, Shanghai Key Laboratory for Contemporary Applied Mathematics, Shanghai 200433, China

Received  October 2014 Revised  March 2015 Published  August 2015

Let $M$ be a closed and smooth manifold and $H_\varepsilon:T^*M\to\mathbf{R}^1$ be a family of Tonelli Hamiltonians for $\varepsilon\geq0$ small. For each $\varphi\in C(M,\mathbf{R}^1)$, $T^\varepsilon_t\varphi(x)$ is the unique viscosity solution of the Cauchy problem \begin{align*} \left\{ \begin{array}{ll} d_tw+H_\varepsilon(x,d_xw)=0, & \ \mathrm{in}\ M\times(0,+\infty),\\ w|_{t=0}=\varphi, & \ \mathrm{on}\ M, \end{array} \right. \end{align*} where $T^\varepsilon_t$ is the Lax-Oleinik operator associated with $H_\varepsilon$. A result of Fathi asserts that the uniform limit, for $t\to+\infty$, of $T^\varepsilon_t\varphi+c_\varepsilon t$ exists and the limit $\bar{\varphi}_\varepsilon$ is a viscosity solution of the stationary Hamilton-Jacobi equation \begin{align*} H_\varepsilon(x,d_xu)=c_\varepsilon, \end{align*} where $c_\varepsilon$ is the unique $k$ for which the equation $H_\varepsilon(x,d_xu)=k$ admits viscosity solutions. In the present paper we discuss the continuous dependence of the viscosity solution $\bar{\varphi}_\varepsilon$ with respect to the parameter $\varepsilon$.
Citation: Kaizhi Wang, Jun Yan. Lipschitz dependence of viscosity solutions of Hamilton-Jacobi equations with respect to the parameter. Discrete and Continuous Dynamical Systems, 2016, 36 (3) : 1649-1659. doi: 10.3934/dcds.2016.36.1649
References:
[1]

P. Bernard, Smooth critical sub-solutions of the Hamilton-Jacobi equation, Math. Res. Lett., 14 (2007), 503-511. doi: 10.4310/MRL.2007.v14.n3.a14.

[2]

C. Cheng and J. Yan, Existence of diffusion orbits in a priori unstable Hamiltonian systems, J. Differential Geom., 67 (2004), 457-517.

[3]

C. Cheng and J. Yan, Arnold diffusion in Hamiltonian systems: A priori unstable case, J. Differential Geom., 82 (2009), 229-277.

[4]

G. Contreras, Action potential and weak KAM solutions, Calc. Var. Partial Differential Equations, 13 (2001), 427-458. doi: 10.1007/s005260100081.

[5]

M. Crandall and P. Lions, Viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc., 277 (1983), 1-42. doi: 10.1090/S0002-9947-1983-0690039-8.

[6]

A. Fathi and J. Mather, Failure of convergence of the Lax-Oleinik semi-group in the time-periodic case, Bull. Soc. Math. France, 128 (2000), 473-483.

[7]

A. Fathi, Weak KAM Theorems in Lagrangian Dynamics, Seventh preliminary version, Pisa, 2005.

[8]

M. Hirsch, C. Pugh and M. Shub, Invariant Manifolds, Lecture Notes in Mathematics, 583, Springer Verlag, Berlin, New York, 1977.

[9]

A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, Encyclopedia of Mathematics and its Applications, 54, Cambridge University Press, Cambridge, 1995. doi: 10.1017/CBO9780511809187.

[10]

R. Mañé, Lagrangian flows: The dynamics of globally minimizing orbits, Bol. Soc. Brasil. Mat. (N.S.), 28 (1997), 141-153. doi: 10.1007/BF01233389.

[11]

J. Mather, Action minimizing invariant measures for positive definite Lagrangian systems, Math. Z., 207 (1991), 169-207. doi: 10.1007/BF02571383.

[12]

J. Mather, Variational construction of connecting orbits, Ann. Inst. Fourier (Grenoble), 43 (1993), 1349-1386. doi: 10.5802/aif.1377.

[13]

J. Palis and W. de Melo, Geometric Theory of Dynamical Systems. An Introduction, Springer-Verlag, New York, 1982.

[14]

A. Sorrentino, Lecture Notes on Mather's Theory for Lagrangian Systems, preprint, 2010.

[15]

K. Wang and J. Yan, A new kind of Lax-Oleinik type operator with parameters for time-periodic positive definite Lagrangian systems, Commun. Math. Phys., 309 (2012), 663-691. doi: 10.1007/s00220-011-1375-x.

[16]

A. Weinstein, Symplectic manifolds and their Lagrangian submanifolds, Advances in Math., 6 (1971), 329-346. doi: 10.1016/0001-8708(71)90020-X.

show all references

References:
[1]

P. Bernard, Smooth critical sub-solutions of the Hamilton-Jacobi equation, Math. Res. Lett., 14 (2007), 503-511. doi: 10.4310/MRL.2007.v14.n3.a14.

[2]

C. Cheng and J. Yan, Existence of diffusion orbits in a priori unstable Hamiltonian systems, J. Differential Geom., 67 (2004), 457-517.

[3]

C. Cheng and J. Yan, Arnold diffusion in Hamiltonian systems: A priori unstable case, J. Differential Geom., 82 (2009), 229-277.

[4]

G. Contreras, Action potential and weak KAM solutions, Calc. Var. Partial Differential Equations, 13 (2001), 427-458. doi: 10.1007/s005260100081.

[5]

M. Crandall and P. Lions, Viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc., 277 (1983), 1-42. doi: 10.1090/S0002-9947-1983-0690039-8.

[6]

A. Fathi and J. Mather, Failure of convergence of the Lax-Oleinik semi-group in the time-periodic case, Bull. Soc. Math. France, 128 (2000), 473-483.

[7]

A. Fathi, Weak KAM Theorems in Lagrangian Dynamics, Seventh preliminary version, Pisa, 2005.

[8]

M. Hirsch, C. Pugh and M. Shub, Invariant Manifolds, Lecture Notes in Mathematics, 583, Springer Verlag, Berlin, New York, 1977.

[9]

A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, Encyclopedia of Mathematics and its Applications, 54, Cambridge University Press, Cambridge, 1995. doi: 10.1017/CBO9780511809187.

[10]

R. Mañé, Lagrangian flows: The dynamics of globally minimizing orbits, Bol. Soc. Brasil. Mat. (N.S.), 28 (1997), 141-153. doi: 10.1007/BF01233389.

[11]

J. Mather, Action minimizing invariant measures for positive definite Lagrangian systems, Math. Z., 207 (1991), 169-207. doi: 10.1007/BF02571383.

[12]

J. Mather, Variational construction of connecting orbits, Ann. Inst. Fourier (Grenoble), 43 (1993), 1349-1386. doi: 10.5802/aif.1377.

[13]

J. Palis and W. de Melo, Geometric Theory of Dynamical Systems. An Introduction, Springer-Verlag, New York, 1982.

[14]

A. Sorrentino, Lecture Notes on Mather's Theory for Lagrangian Systems, preprint, 2010.

[15]

K. Wang and J. Yan, A new kind of Lax-Oleinik type operator with parameters for time-periodic positive definite Lagrangian systems, Commun. Math. Phys., 309 (2012), 663-691. doi: 10.1007/s00220-011-1375-x.

[16]

A. Weinstein, Symplectic manifolds and their Lagrangian submanifolds, Advances in Math., 6 (1971), 329-346. doi: 10.1016/0001-8708(71)90020-X.

[1]

Xifeng Su, Lin Wang, Jun Yan. Weak KAM theory for HAMILTON-JACOBI equations depending on unknown functions. Discrete and Continuous Dynamical Systems, 2016, 36 (11) : 6487-6522. doi: 10.3934/dcds.2016080

[2]

Mihai Bostan, Gawtum Namah. Time periodic viscosity solutions of Hamilton-Jacobi equations. Communications on Pure and Applied Analysis, 2007, 6 (2) : 389-410. doi: 10.3934/cpaa.2007.6.389

[3]

Thi Tuyen Nguyen. Large time behavior of solutions of local and nonlocal nondegenerate Hamilton-Jacobi equations with Ornstein-Uhlenbeck operator. Communications on Pure and Applied Analysis, 2019, 18 (3) : 999-1021. doi: 10.3934/cpaa.2019049

[4]

Olivier Ley, Erwin Topp, Miguel Yangari. Some results for the large time behavior of Hamilton-Jacobi equations with Caputo time derivative. Discrete and Continuous Dynamical Systems, 2021, 41 (8) : 3555-3577. doi: 10.3934/dcds.2021007

[5]

Olga Bernardi, Franco Cardin. Minimax and viscosity solutions of Hamilton-Jacobi equations in the convex case. Communications on Pure and Applied Analysis, 2006, 5 (4) : 793-812. doi: 10.3934/cpaa.2006.5.793

[6]

Gawtum Namah, Mohammed Sbihi. A notion of extremal solutions for time periodic Hamilton-Jacobi equations. Discrete and Continuous Dynamical Systems - B, 2010, 13 (3) : 647-664. doi: 10.3934/dcdsb.2010.13.647

[7]

Eddaly Guerra, Héctor Sánchez-Morgado. Vanishing viscosity limits for space-time periodic Hamilton-Jacobi equations. Communications on Pure and Applied Analysis, 2014, 13 (1) : 331-346. doi: 10.3934/cpaa.2014.13.331

[8]

Kai Zhao, Wei Cheng. On the vanishing contact structure for viscosity solutions of contact type Hamilton-Jacobi equations I: Cauchy problem. Discrete and Continuous Dynamical Systems, 2019, 39 (8) : 4345-4358. doi: 10.3934/dcds.2019176

[9]

Yasuhiro Fujita, Katsushi Ohmori. Inequalities and the Aubry-Mather theory of Hamilton-Jacobi equations. Communications on Pure and Applied Analysis, 2009, 8 (2) : 683-688. doi: 10.3934/cpaa.2009.8.683

[10]

Xia Li. Long-time asymptotic solutions of convex hamilton-jacobi equations depending on unknown functions. Discrete and Continuous Dynamical Systems, 2017, 37 (10) : 5151-5162. doi: 10.3934/dcds.2017223

[11]

Piermarco Cannarsa, Marco Mazzola, Carlo Sinestrari. Global propagation of singularities for time dependent Hamilton-Jacobi equations. Discrete and Continuous Dynamical Systems, 2015, 35 (9) : 4225-4239. doi: 10.3934/dcds.2015.35.4225

[12]

Manuel de León, David Martín de Diego, Miguel Vaquero. A Hamilton-Jacobi theory on Poisson manifolds. Journal of Geometric Mechanics, 2014, 6 (1) : 121-140. doi: 10.3934/jgm.2014.6.121

[13]

Olga Bernardi, Franco Cardin. On $C^0$-variational solutions for Hamilton-Jacobi equations. Discrete and Continuous Dynamical Systems, 2011, 31 (2) : 385-406. doi: 10.3934/dcds.2011.31.385

[14]

Gui-Qiang Chen, Bo Su. Discontinuous solutions for Hamilton-Jacobi equations: Uniqueness and regularity. Discrete and Continuous Dynamical Systems, 2003, 9 (1) : 167-192. doi: 10.3934/dcds.2003.9.167

[15]

David McCaffrey. A representational formula for variational solutions to Hamilton-Jacobi equations. Communications on Pure and Applied Analysis, 2012, 11 (3) : 1205-1215. doi: 10.3934/cpaa.2012.11.1205

[16]

Qiwei Wu, Liping Luan. Large-time behavior of solutions to unipolar Euler-Poisson equations with time-dependent damping. Communications on Pure and Applied Analysis, 2021, 20 (3) : 995-1023. doi: 10.3934/cpaa.2021003

[17]

Nalini Anantharaman, Renato Iturriaga, Pablo Padilla, Héctor Sánchez-Morgado. Physical solutions of the Hamilton-Jacobi equation. Discrete and Continuous Dynamical Systems - B, 2005, 5 (3) : 513-528. doi: 10.3934/dcdsb.2005.5.513

[18]

Claudio Marchi. On the convergence of singular perturbations of Hamilton-Jacobi equations. Communications on Pure and Applied Analysis, 2010, 9 (5) : 1363-1377. doi: 10.3934/cpaa.2010.9.1363

[19]

Isabeau Birindelli, J. Wigniolle. Homogenization of Hamilton-Jacobi equations in the Heisenberg group. Communications on Pure and Applied Analysis, 2003, 2 (4) : 461-479. doi: 10.3934/cpaa.2003.2.461

[20]

Gonzalo Dávila. Comparison principles for nonlocal Hamilton-Jacobi equations. Discrete and Continuous Dynamical Systems, 2022  doi: 10.3934/dcds.2022061

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (169)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]