\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Lipschitz dependence of viscosity solutions of Hamilton-Jacobi equations with respect to the parameter

Abstract / Introduction Related Papers Cited by
  • Let $M$ be a closed and smooth manifold and $H_\varepsilon:T^*M\to\mathbf{R}^1$ be a family of Tonelli Hamiltonians for $\varepsilon\geq0$ small. For each $\varphi\in C(M,\mathbf{R}^1)$, $T^\varepsilon_t\varphi(x)$ is the unique viscosity solution of the Cauchy problem \begin{align*} \left\{ \begin{array}{ll} d_tw+H_\varepsilon(x,d_xw)=0, & \ \mathrm{in}\ M\times(0,+\infty),\\ w|_{t=0}=\varphi, & \ \mathrm{on}\ M, \end{array} \right. \end{align*} where $T^\varepsilon_t$ is the Lax-Oleinik operator associated with $H_\varepsilon$. A result of Fathi asserts that the uniform limit, for $t\to+\infty$, of $T^\varepsilon_t\varphi+c_\varepsilon t$ exists and the limit $\bar{\varphi}_\varepsilon$ is a viscosity solution of the stationary Hamilton-Jacobi equation \begin{align*} H_\varepsilon(x,d_xu)=c_\varepsilon, \end{align*} where $c_\varepsilon$ is the unique $k$ for which the equation $H_\varepsilon(x,d_xu)=k$ admits viscosity solutions. In the present paper we discuss the continuous dependence of the viscosity solution $\bar{\varphi}_\varepsilon$ with respect to the parameter $\varepsilon$.
    Mathematics Subject Classification: Primary: 37J50; Secondary: 70H20.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    P. Bernard, Smooth critical sub-solutions of the Hamilton-Jacobi equation, Math. Res. Lett., 14 (2007), 503-511.doi: 10.4310/MRL.2007.v14.n3.a14.

    [2]

    C. Cheng and J. Yan, Existence of diffusion orbits in a priori unstable Hamiltonian systems, J. Differential Geom., 67 (2004), 457-517.

    [3]

    C. Cheng and J. Yan, Arnold diffusion in Hamiltonian systems: A priori unstable case, J. Differential Geom., 82 (2009), 229-277.

    [4]

    G. Contreras, Action potential and weak KAM solutions, Calc. Var. Partial Differential Equations, 13 (2001), 427-458.doi: 10.1007/s005260100081.

    [5]

    M. Crandall and P. Lions, Viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc., 277 (1983), 1-42.doi: 10.1090/S0002-9947-1983-0690039-8.

    [6]

    A. Fathi and J. Mather, Failure of convergence of the Lax-Oleinik semi-group in the time-periodic case, Bull. Soc. Math. France, 128 (2000), 473-483.

    [7]

    A. Fathi, Weak KAM Theorems in Lagrangian Dynamics, Seventh preliminary version, Pisa, 2005.

    [8]

    M. Hirsch, C. Pugh and M. Shub, Invariant Manifolds, Lecture Notes in Mathematics, 583, Springer Verlag, Berlin, New York, 1977.

    [9]

    A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, Encyclopedia of Mathematics and its Applications, 54, Cambridge University Press, Cambridge, 1995.doi: 10.1017/CBO9780511809187.

    [10]

    R. Mañé, Lagrangian flows: The dynamics of globally minimizing orbits, Bol. Soc. Brasil. Mat. (N.S.), 28 (1997), 141-153.doi: 10.1007/BF01233389.

    [11]

    J. Mather, Action minimizing invariant measures for positive definite Lagrangian systems, Math. Z., 207 (1991), 169-207.doi: 10.1007/BF02571383.

    [12]

    J. Mather, Variational construction of connecting orbits, Ann. Inst. Fourier (Grenoble), 43 (1993), 1349-1386.doi: 10.5802/aif.1377.

    [13]

    J. Palis and W. de Melo, Geometric Theory of Dynamical Systems. An Introduction, Springer-Verlag, New York, 1982.

    [14]

    A. Sorrentino, Lecture Notes on Mather's Theory for Lagrangian Systems, preprint, 2010.

    [15]

    K. Wang and J. Yan, A new kind of Lax-Oleinik type operator with parameters for time-periodic positive definite Lagrangian systems, Commun. Math. Phys., 309 (2012), 663-691.doi: 10.1007/s00220-011-1375-x.

    [16]

    A. Weinstein, Symplectic manifolds and their Lagrangian submanifolds, Advances in Math., 6 (1971), 329-346.doi: 10.1016/0001-8708(71)90020-X.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(177) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return