\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

The regularity of sonic curves for the two-dimensional Riemann problems of the nonlinear wave system of Chaplygin gas

Abstract / Introduction Related Papers Cited by
  • We study the regularity of sonic curves from a two-dimensional Riemann problem for the nonlinear wave system of Chaplygin gas, which is an essential step for the global existence of solutions to the two-dimensional Riemann problems. As a result, we establish the global existence of uniformly smooth solutions in the semi-hyperbolic patches up to the sonic boundary, where the degeneracy of hyperbolicity occurs. Furthermore, we show the $C^1$-regularity of sonic curves.
    Mathematics Subject Classification: 35L65, 35J70, 35R35.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    M. Brio and J. K. Hunter, Mach reflection for the two-dimensional Burgers equation, Phys. D, 60 (1992), 194-207.doi: 10.1016/0167-2789(92)90236-G.

    [2]

    S. Čanić and B. L. Keyfitz, An elliptic problem arising from the unsteady transonic small disturbance equation, J. Differential Equations, 125 (1996), 548-574.doi: 10.1006/jdeq.1996.0040.

    [3]

    S. Čanić, B. L. Keyfitz and E. H. Kim, Free boundary problems for the unsteady transonic small disturbance equation: Transonic regular reflection, Methods Appl. Anal., 7 (2000), 313-335.

    [4]

    S. Čanić, B. L. Keyfitz and E. H. Kim, Free boundary problems for nonlinear wave equations: Mach stems for interacting shocks, SIAM J. Math. Anal., 37 (2006), 1947-1977.doi: 10.1137/S003614100342989X.

    [5]

    G.-Q. Chen and M. Feldman, Multidimensional transonic shocks and free boundary problems for nonlinear equations of mixed type, J. Amer. Math. Soc., 16 (2003), 461-494.doi: 10.1090/S0894-0347-03-00422-3.

    [6]

    G.-Q. Chen and M. Feldman, Steady transonic shock and free boundary problems in infinite cylinders for the Euler equations, Comm. Pure Appl. Math., 57 (2004), 310-356.doi: 10.1002/cpa.3042.

    [7]

    S. Chen and A. Qu, Two-dimensional Riemann problems for Chaplygin gas, SIAM J. Math. Anal., 44 (2012), 2146-2178.doi: 10.1137/110838091.

    [8]

    H. Cheng and H. Yang, Riemann problem for the relativistic Chaplygin Euler equations, J. Math. Anal. Appl., 381 (2011), 17-26.doi: 10.1016/j.jmaa.2011.04.017.

    [9]

    R. Courant and K. O. Friedrichs, Supersonic Flow and Shock Waves, Interscience, New York, 1948.

    [10]

    Z. Dai and T. Zhang, Existence of a global smooth solution for a degenerate Goursat problem of gas dynamics, Arch. Ration. Mech. Anal., 155 (2000), 277-298.doi: 10.1007/s002050000113.

    [11]

    V. Elling and T.-P. Liu, The ellipticity principle for steady and selfsimilar polytropic potential flow, J. Hyperbolic Differential Equations, 2 (2005), 909-917.doi: 10.1142/S0219891605000646.

    [12]

    J. Glimm, X. Ji, J. Li, X. Li, P. Zhang, T. Zhang and Y. Zheng, Transonic shock formation in a rarefaction Riemann problem for the 2-D compressible Euler equations, SIAM J. Appl. Math., 69 (2008), 720-742.doi: 10.1137/07070632X.

    [13]

    Y. Hu and G. Wang, Semi-hyperbolic patches of solutions to the two-dimensional nonlinear wave system for Chaplygin gases, J. Differential Equations, 257 (2014), 1567-1590.doi: 10.1016/j.jde.2014.05.020.

    [14]

    E. H. Kim, An interaction of a rarefaction wave and a transonic shock for the self-similar two-dimensional nonlinear wave system, Comm. Partial Differential Equations, 37 (2012), 610-646.doi: 10.1080/03605302.2011.653615.

    [15]

    E. H. Kim, A global subsonic solution to an interacting transonic shock for the self-similar nonlinear wave equation, J. Differential Equations, 248 (2010), 2906-2930.doi: 10.1016/j.jde.2010.02.021.

    [16]

    E. H. Kim, Subsonic solutions for compressible transonic potential flows, J. Differential Equations, 233 (2007), 276-290.doi: 10.1016/j.jde.2006.10.013.

    [17]

    E. H. Kim and K. Song, Classical solutions for the pressure-gradient equations in non-smooth and non-convex domains, J. Math. Anal. Appl., 293 (2004), 541-550.doi: 10.1016/j.jmaa.2004.01.016.

    [18]

    G. Lai, W. C. Sheng and Y. Zheng, Simple waves and pressure delta waves for a Chaplygin gas in multi-dimensions, Discrete Contin. Dyn. Syst., 31 (2011), 489-523.doi: 10.3934/dcds.2011.31.489.

    [19]

    Z. Lei and Y. Zheng, A complete global solution to the pressure gradient equation, J. Differential Equations, 236 (2007), 280-292.doi: 10.1016/j.jde.2007.01.024.

    [20]

    M. Li and Y. Zheng, Semi-hyperbolic patches of solutions to the two-dimensional Euler equations, Arch. Ration. Mech. Anal., 201 (2011), 1069-1096.doi: 10.1007/s00205-011-0410-6.

    [21]

    D. Serre, Multidimensional shock interaction for a Chaplygin gas, Arch. Ration. Mech. Anal., 191 (2009), 539-577.doi: 10.1007/s00205-008-0110-z.

    [22]

    K. Song, Semi-hyperbolic patches arising from a transonic shock in simple waves interaction, J. Korean Math. Soc., 50 (2013), 945-957.doi: 10.4134/JKMS.2013.50.5.945.

    [23]

    K. Song, Q. Wang and Y. Zheng, The regularity of semi-hyperbolic patches near sonic lines for the 2-D Euler system in gas dynamics, SIAM J. Math. Anal., 47 (2015), 2200-2219.doi: 10.1137/140964382.

    [24]

    K. Song and Y. Zheng, Semi-hyperbolic patches of the pressure gradient system, Disc. Cont. Dyna. Syst., Series A, 24 (2009), 1365-1380.doi: 10.3934/dcds.2009.24.1365.

    [25]

    A. M. Tesdall, R. Sanders and B. L. Keyfitz, The triple point paradox for the nonlinear wave system, SIAM J. Appl. Math., 67 (2006), 321-336.doi: 10.1137/060660758.

    [26]

    G. Wang, B. Chen and Y. Hu, The two-dimensional Riemann problem for Chaplygin gas dynamics with three constant states, J. Math. Anal. Appl., 393 (2012), 544-562.doi: 10.1016/j.jmaa.2012.03.017.

    [27]

    Q. Wang and Y. Zheng, The regularity of semi-hyperbolic patches at sonic lines for the pressure gradient equation in gas dynamics, Indiana Univ. Math. J., 63 (2014), 385-402.doi: 10.1512/iumj.2014.63.5244.

    [28]

    T. Zhang and Y. Zheng, Sonic-supersonic solutions for the steady Euler equations, Indiana Univ. Math. J., 63 (2014), 1785-1817.doi: 10.1512/iumj.2014.63.5434.

    [29]

    Y. Zheng, Existence of solutions to the transonic pressure gradient equations of the compressible Euler equations in elliptic regions, Comm. Partial Differential Equations, 22 (1997), 1849-1868.doi: 10.1080/03605309708821323.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(185) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return