March  2016, 36(3): 1693-1707. doi: 10.3934/dcds.2016.36.1693

Structurally stable homoclinic classes

1. 

School of Mathematics and Systems Science, Beihang University, Beijing 100191

Received  October 2014 Revised  June 2015 Published  August 2015

In this paper we study structurally stable homoclinic classes. In a natural way, the structural stability for an individual homoclinic class is defined through the continuation of periodic points. Since the classes is not innately locally maximal, it is hard to answer whether structurally stable homoclinic classes are hyperbolic. In this article, we make some progress on this question. We prove that if a homoclinic class is structurally stable, then it admits a dominated splitting. Moreover we prove that codimension one structurally stable classes are hyperbolic. Also, if the diffeomorphism is far away from homoclinic tangencies, then structurally stable homoclinic classes are hyperbolic.
Citation: Xiao Wen. Structurally stable homoclinic classes. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1693-1707. doi: 10.3934/dcds.2016.36.1693
References:
[1]

F. Abdenur, Ch. Bonatti, S. Crovisier, L. J. Diáz and L. Wen, Periodic points and homoclinic classes,, Ergodic Theory and Dynamical Systems, 27 (2007), 1.  doi: 10.1017/S0143385706000538.  Google Scholar

[2]

C. Bonatti and S. Crovisier, Recurrence and genericity,, Invent. Math., 158 (2004), 33.  doi: 10.1007/s00222-004-0368-1.  Google Scholar

[3]

C. Bonatti L. Díaz, and E. Pujals, A $C^1$-generic dichotomy for diffeomorphisms: Weak forms of hyperbolicity or infinitely many sinks or sources,, Ann. of Math., 158 (2003), 355.  doi: 10.4007/annals.2003.158.355.  Google Scholar

[4]

C. Bonatti, S. Gan and D. Yang, On the hyperbolicity of homoclinic classes,, Discrete Contin. Dyn. Syst., 25 (2009), 1143.  doi: 10.3934/dcds.2009.25.1143.  Google Scholar

[5]

S. Crovisier, Partial hyperbolicity far from homoclinic bifurcations,, Advances in Mathematics, 226 (2011), 673.  doi: 10.1016/j.aim.2010.07.013.  Google Scholar

[6]

S. Crovisier, Periodic orbits and chain-transitive sets of $C^1$-diffeomorphisms,, Publ. Math. I.H.E.S, 104 (2006), 87.  doi: 10.1007/s10240-006-0002-4.  Google Scholar

[7]

S. Crovisier, M. Sambarino and D. Yang, Partial hyperbolicity and homoclinic tangencies,, Journal of the European Mathematical Society, 17 (2015), 1.  doi: 10.4171/JEMS/497.  Google Scholar

[8]

J. Franks, Necessary conditions for stability of diffeomorphisms,, Transactions of the A.M.S 158 (1971), 158 (1971), 301.  doi: 10.1090/S0002-9947-1971-0283812-3.  Google Scholar

[9]

M. Hirsch, C. Pugh and M. Shub, Invariant Manifolds,, Lect. Notes in Math., (1977).   Google Scholar

[10]

S. Gan and L. Wen, Heteroclinic cycles and homoclinic closures for generic diffeomorphisms,, J. Dynam. Differential Equations, 15 (2003), 451.  doi: 10.1023/B:JODY.0000009743.10365.9d.  Google Scholar

[11]

N. Gourmelon, An Isotopic Perturbation Lemma Along Periodic Orbits manifolds,, preprint, ().   Google Scholar

[12]

S. Liao, A basic property of a certain class of differential systems,, Acta Math. Sinica, 22 (1979), 316.   Google Scholar

[13]

S. Liao, Obstruction sets II,, Acta Sci. Natur. Univ. Pekinensis, 2 (1981), 1.   Google Scholar

[14]

R. Mañé, An ergodic closing lemma,, Annals of Math., 116 (1982), 503.  doi: 10.2307/2007021.  Google Scholar

[15]

R. Mañé, A proof of the $C^1$ stability conjecture,, Publ. Math. I.H.E.S, 66 (1988), 161.   Google Scholar

[16]

J. Palis and W. de Melo, Geometric Theory of Dynamical Systems. An Introduction,, Transl. from the Portuguese by A. K. Manning. (English), (1982).   Google Scholar

[17]

J. Palis and S. Smale, Structural stability theorems,, in Global Analysis (Proc. Sympos. Pure Math., (1968), 223.   Google Scholar

[18]

E. Pujals and M. Sambarino, Homoclinic tangencies and hyperbolicity for surface diffeomorphisms,, Annals of Math., 151 (2000), 961.  doi: 10.2307/121127.  Google Scholar

[19]

M. Sambarino and J. Vieitez, On $C^1$-persistently expansive homoclinic classes,, Discrete Contin. Dyn. Syst., 14 (2006), 465.   Google Scholar

[20]

X. Wen and L. Wen, Codimension One Structurally Stable Chain Classes,, to appear in Transactions of the A.M.S., ().  doi: 10.1090/tran/6440.  Google Scholar

show all references

References:
[1]

F. Abdenur, Ch. Bonatti, S. Crovisier, L. J. Diáz and L. Wen, Periodic points and homoclinic classes,, Ergodic Theory and Dynamical Systems, 27 (2007), 1.  doi: 10.1017/S0143385706000538.  Google Scholar

[2]

C. Bonatti and S. Crovisier, Recurrence and genericity,, Invent. Math., 158 (2004), 33.  doi: 10.1007/s00222-004-0368-1.  Google Scholar

[3]

C. Bonatti L. Díaz, and E. Pujals, A $C^1$-generic dichotomy for diffeomorphisms: Weak forms of hyperbolicity or infinitely many sinks or sources,, Ann. of Math., 158 (2003), 355.  doi: 10.4007/annals.2003.158.355.  Google Scholar

[4]

C. Bonatti, S. Gan and D. Yang, On the hyperbolicity of homoclinic classes,, Discrete Contin. Dyn. Syst., 25 (2009), 1143.  doi: 10.3934/dcds.2009.25.1143.  Google Scholar

[5]

S. Crovisier, Partial hyperbolicity far from homoclinic bifurcations,, Advances in Mathematics, 226 (2011), 673.  doi: 10.1016/j.aim.2010.07.013.  Google Scholar

[6]

S. Crovisier, Periodic orbits and chain-transitive sets of $C^1$-diffeomorphisms,, Publ. Math. I.H.E.S, 104 (2006), 87.  doi: 10.1007/s10240-006-0002-4.  Google Scholar

[7]

S. Crovisier, M. Sambarino and D. Yang, Partial hyperbolicity and homoclinic tangencies,, Journal of the European Mathematical Society, 17 (2015), 1.  doi: 10.4171/JEMS/497.  Google Scholar

[8]

J. Franks, Necessary conditions for stability of diffeomorphisms,, Transactions of the A.M.S 158 (1971), 158 (1971), 301.  doi: 10.1090/S0002-9947-1971-0283812-3.  Google Scholar

[9]

M. Hirsch, C. Pugh and M. Shub, Invariant Manifolds,, Lect. Notes in Math., (1977).   Google Scholar

[10]

S. Gan and L. Wen, Heteroclinic cycles and homoclinic closures for generic diffeomorphisms,, J. Dynam. Differential Equations, 15 (2003), 451.  doi: 10.1023/B:JODY.0000009743.10365.9d.  Google Scholar

[11]

N. Gourmelon, An Isotopic Perturbation Lemma Along Periodic Orbits manifolds,, preprint, ().   Google Scholar

[12]

S. Liao, A basic property of a certain class of differential systems,, Acta Math. Sinica, 22 (1979), 316.   Google Scholar

[13]

S. Liao, Obstruction sets II,, Acta Sci. Natur. Univ. Pekinensis, 2 (1981), 1.   Google Scholar

[14]

R. Mañé, An ergodic closing lemma,, Annals of Math., 116 (1982), 503.  doi: 10.2307/2007021.  Google Scholar

[15]

R. Mañé, A proof of the $C^1$ stability conjecture,, Publ. Math. I.H.E.S, 66 (1988), 161.   Google Scholar

[16]

J. Palis and W. de Melo, Geometric Theory of Dynamical Systems. An Introduction,, Transl. from the Portuguese by A. K. Manning. (English), (1982).   Google Scholar

[17]

J. Palis and S. Smale, Structural stability theorems,, in Global Analysis (Proc. Sympos. Pure Math., (1968), 223.   Google Scholar

[18]

E. Pujals and M. Sambarino, Homoclinic tangencies and hyperbolicity for surface diffeomorphisms,, Annals of Math., 151 (2000), 961.  doi: 10.2307/121127.  Google Scholar

[19]

M. Sambarino and J. Vieitez, On $C^1$-persistently expansive homoclinic classes,, Discrete Contin. Dyn. Syst., 14 (2006), 465.   Google Scholar

[20]

X. Wen and L. Wen, Codimension One Structurally Stable Chain Classes,, to appear in Transactions of the A.M.S., ().  doi: 10.1090/tran/6440.  Google Scholar

[1]

Christian Bonatti, Shaobo Gan, Dawei Yang. On the hyperbolicity of homoclinic classes. Discrete & Continuous Dynamical Systems - A, 2009, 25 (4) : 1143-1162. doi: 10.3934/dcds.2009.25.1143

[2]

Keonhee Lee, Manseob Lee. Hyperbolicity of $C^1$-stably expansive homoclinic classes. Discrete & Continuous Dynamical Systems - A, 2010, 27 (3) : 1133-1145. doi: 10.3934/dcds.2010.27.1133

[3]

Shaobo Gan, Kazuhiro Sakai, Lan Wen. $C^1$ -stably weakly shadowing homoclinic classes admit dominated splittings. Discrete & Continuous Dynamical Systems - A, 2010, 27 (1) : 205-216. doi: 10.3934/dcds.2010.27.205

[4]

Xingbo Liu, Deming Zhu. On the stability of homoclinic loops with higher dimension. Discrete & Continuous Dynamical Systems - B, 2012, 17 (3) : 915-932. doi: 10.3934/dcdsb.2012.17.915

[5]

Enrique R. Pujals. On the density of hyperbolicity and homoclinic bifurcations for 3D-diffeomorphisms in attracting regions. Discrete & Continuous Dynamical Systems - A, 2006, 16 (1) : 179-226. doi: 10.3934/dcds.2006.16.179

[6]

Enrique R. Pujals. Density of hyperbolicity and homoclinic bifurcations for attracting topologically hyperbolic sets. Discrete & Continuous Dynamical Systems - A, 2008, 20 (2) : 335-405. doi: 10.3934/dcds.2008.20.335

[7]

Samir Adly, Daniel Goeleven, Dumitru Motreanu. Periodic and homoclinic solutions for a class of unilateral problems. Discrete & Continuous Dynamical Systems - A, 1997, 3 (4) : 579-590. doi: 10.3934/dcds.1997.3.579

[8]

Ying Lv, Yan-Fang Xue, Chun-Lei Tang. Homoclinic orbits for a class of asymptotically quadratic Hamiltonian systems. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2855-2878. doi: 10.3934/cpaa.2019128

[9]

Addolorata Salvatore. Multiple homoclinic orbits for a class of second order perturbed Hamiltonian systems. Conference Publications, 2003, 2003 (Special) : 778-787. doi: 10.3934/proc.2003.2003.778

[10]

Jun Wang, Junxiang Xu, Fubao Zhang. Homoclinic orbits for a class of Hamiltonian systems with superquadratic or asymptotically quadratic potentials. Communications on Pure & Applied Analysis, 2011, 10 (1) : 269-286. doi: 10.3934/cpaa.2011.10.269

[11]

Tiantian Wu, Xiao-Song Yang. A new class of 3-dimensional piecewise affine systems with homoclinic orbits. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 5119-5129. doi: 10.3934/dcds.2016022

[12]

Eleonora Catsigeras, Xueting Tian. Dominated splitting, partial hyperbolicity and positive entropy. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 4739-4759. doi: 10.3934/dcds.2016006

[13]

Victoria Rayskin. Homoclinic tangencies in $R^n$. Discrete & Continuous Dynamical Systems - A, 2005, 12 (3) : 465-480. doi: 10.3934/dcds.2005.12.465

[14]

Wolf-Jürgen Beyn, Thorsten Hüls. Continuation and collapse of homoclinic tangles. Journal of Computational Dynamics, 2014, 1 (1) : 71-109. doi: 10.3934/jcd.2014.1.71

[15]

Zhihong Xia. Homoclinic points and intersections of Lagrangian submanifold. Discrete & Continuous Dynamical Systems - A, 2000, 6 (1) : 243-253. doi: 10.3934/dcds.2000.6.243

[16]

Jean Lerbet, Noël Challamel, François Nicot, Félix Darve. Kinematical structural stability. Discrete & Continuous Dynamical Systems - S, 2016, 9 (2) : 529-536. doi: 10.3934/dcdss.2016010

[17]

M'hamed Kesri. Structural stability of optimal control problems. Communications on Pure & Applied Analysis, 2005, 4 (4) : 743-756. doi: 10.3934/cpaa.2005.4.743

[18]

Jérôme Buzzi, Todd Fisher. Entropic stability beyond partial hyperbolicity. Journal of Modern Dynamics, 2013, 7 (4) : 527-552. doi: 10.3934/jmd.2013.7.527

[19]

Nikolaz Gourmelon. Generation of homoclinic tangencies by $C^1$-perturbations. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 1-42. doi: 10.3934/dcds.2010.26.1

[20]

Sonja Hohloch. Transport, flux and growth of homoclinic Floer homology. Discrete & Continuous Dynamical Systems - A, 2012, 32 (10) : 3587-3620. doi: 10.3934/dcds.2012.32.3587

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (12)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]