Citation: |
[1] |
D. Chae and M. Chae, The global existence in the Cauchy problem of the Maxwell-Chern-Simons-Higgs system, Journal of Mathematical physics, 43 (2002), 5470-5482.doi: 10.1063/1.1507609. |
[2] |
D. Chae and M. Chae, On the Cauchy problem in the Maxwell-Chern-Simons-Higgs system, Tosio Kato's Method and Principle for Evolution Equations in Mathematical Physics (eds. H. Fujita, S. T. Kuroda and H. Okamoto, Distributed by Yurinsha), Sūrikaisekikenkyūsho Kōkyūroku, 1234 (2001), 206-212. |
[3] |
S. Klainerman and M. Machedon, On the Maxwell-Klein-Gordon equation with finite energy, Duke Math. J., 74 (1994), 19-44.doi: 10.1215/S0012-7094-94-07402-4. |
[4] |
C. Lee, K. Lee and H. Min, Self-dual Maxwell-Chern-Simons solitons, Phys. Lett. B, 252 (1990), 79-83.doi: 10.1016/0370-2693(90)91084-O. |
[5] |
H. Pecher, Local solutions with infinite energy of the Maxwell-Chern-Simons-Higgs system in Lorenz gauge, preprint, arXiv:1411.1207. |
[6] |
S. Selberg and A. Tesfahun, Finite energy global well-posedness of the Maxwell-Klein- Gordon system in Lorenz gauge, Comm. PDE, 35 (2010), 1029-1057.doi: 10.1080/03605301003717100. |
[7] |
S. Selberg and A. Tesfahun, Global well-posedness of the Chern-Simons-Higgs equations with finite energy, Discrete Cont. Dyn. Syst., 33 (2013), 2531-2546.doi: 10.3934/dcds.2013.33.2531. |
[8] |
T. Tao, Local well-posedness of the Yang-Mills equation in the temporal gauge below the energy norm, JDE, 189 (2003), 366-382.doi: 10.1016/S0022-0396(02)00177-8. |
[9] |
J. Yuan, Well-posedness of Maxwell-Chern-Simons-Higgs system in the Lorenz gauge, Discrete and Continuous Dynamical Systems-Series A, 34 (2014), 2389-2403.doi: 10.3934/dcds.2014.34.2389. |
[10] |
J. Yuan, Local well-posedness of the Maxwell-Chern-Simons-Higgs system in the temporal gauge, Nonlinear Analysis: Theory, Methods & Applications, 99 (2014), 128-135.doi: 10.1016/j.na.2013.12.018. |