\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Global solutions of two coupled Maxwell systems in the temporal gauge

Abstract Related Papers Cited by
  • In this paper, we consider the Maxwell-Klein-Gordon and Maxwell-Chern-Simons-Higgs systems in the temporal gauge. By using the fact that when the spatial gauge potentials are in the Coulomb gauge, their $\dot{H}^1$ norms can be controlled by the energy of the corresponding system and their $L^2$ norms, and the gauge invariance of the systems, we show that finite energy solutions of these two systems exist globally in this gauge.
    Mathematics Subject Classification: 35Q61, 35A01, 35B30.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    D. Chae and M. Chae, The global existence in the Cauchy problem of the Maxwell-Chern-Simons-Higgs system, Journal of Mathematical physics, 43 (2002), 5470-5482.doi: 10.1063/1.1507609.

    [2]

    D. Chae and M. Chae, On the Cauchy problem in the Maxwell-Chern-Simons-Higgs system, Tosio Kato's Method and Principle for Evolution Equations in Mathematical Physics (eds. H. Fujita, S. T. Kuroda and H. Okamoto, Distributed by Yurinsha), Sūrikaisekikenkyūsho Kōkyūroku, 1234 (2001), 206-212.

    [3]

    S. Klainerman and M. Machedon, On the Maxwell-Klein-Gordon equation with finite energy, Duke Math. J., 74 (1994), 19-44.doi: 10.1215/S0012-7094-94-07402-4.

    [4]

    C. Lee, K. Lee and H. Min, Self-dual Maxwell-Chern-Simons solitons, Phys. Lett. B, 252 (1990), 79-83.doi: 10.1016/0370-2693(90)91084-O.

    [5]

    H. Pecher, Local solutions with infinite energy of the Maxwell-Chern-Simons-Higgs system in Lorenz gauge, preprint, arXiv:1411.1207.

    [6]

    S. Selberg and A. Tesfahun, Finite energy global well-posedness of the Maxwell-Klein- Gordon system in Lorenz gauge, Comm. PDE, 35 (2010), 1029-1057.doi: 10.1080/03605301003717100.

    [7]

    S. Selberg and A. Tesfahun, Global well-posedness of the Chern-Simons-Higgs equations with finite energy, Discrete Cont. Dyn. Syst., 33 (2013), 2531-2546.doi: 10.3934/dcds.2013.33.2531.

    [8]

    T. Tao, Local well-posedness of the Yang-Mills equation in the temporal gauge below the energy norm, JDE, 189 (2003), 366-382.doi: 10.1016/S0022-0396(02)00177-8.

    [9]

    J. Yuan, Well-posedness of Maxwell-Chern-Simons-Higgs system in the Lorenz gauge, Discrete and Continuous Dynamical Systems-Series A, 34 (2014), 2389-2403.doi: 10.3934/dcds.2014.34.2389.

    [10]

    J. Yuan, Local well-posedness of the Maxwell-Chern-Simons-Higgs system in the temporal gauge, Nonlinear Analysis: Theory, Methods & Applications, 99 (2014), 128-135.doi: 10.1016/j.na.2013.12.018.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(148) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return