-
Previous Article
A Liouville theorem for $\alpha$-harmonic functions in $\mathbb{R}^n_+$
- DCDS Home
- This Issue
-
Next Article
Structurally stable homoclinic classes
Global solutions of two coupled Maxwell systems in the temporal gauge
1. | The College of Information and Technology, Nanjing University of Chinese Medicine, Nanjing 210046 |
References:
[1] |
D. Chae and M. Chae, The global existence in the Cauchy problem of the Maxwell-Chern-Simons-Higgs system, Journal of Mathematical physics, 43 (2002), 5470-5482.
doi: 10.1063/1.1507609. |
[2] |
D. Chae and M. Chae, On the Cauchy problem in the Maxwell-Chern-Simons-Higgs system, Tosio Kato's Method and Principle for Evolution Equations in Mathematical Physics (eds. H. Fujita, S. T. Kuroda and H. Okamoto, Distributed by Yurinsha), Sūrikaisekikenkyūsho Kōkyūroku, 1234 (2001), 206-212. |
[3] |
S. Klainerman and M. Machedon, On the Maxwell-Klein-Gordon equation with finite energy, Duke Math. J., 74 (1994), 19-44.
doi: 10.1215/S0012-7094-94-07402-4. |
[4] |
C. Lee, K. Lee and H. Min, Self-dual Maxwell-Chern-Simons solitons, Phys. Lett. B, 252 (1990), 79-83.
doi: 10.1016/0370-2693(90)91084-O. |
[5] |
H. Pecher, Local solutions with infinite energy of the Maxwell-Chern-Simons-Higgs system in Lorenz gauge,, preprint, ().
|
[6] |
S. Selberg and A. Tesfahun, Finite energy global well-posedness of the Maxwell-Klein- Gordon system in Lorenz gauge, Comm. PDE, 35 (2010), 1029-1057.
doi: 10.1080/03605301003717100. |
[7] |
S. Selberg and A. Tesfahun, Global well-posedness of the Chern-Simons-Higgs equations with finite energy, Discrete Cont. Dyn. Syst., 33 (2013), 2531-2546.
doi: 10.3934/dcds.2013.33.2531. |
[8] |
T. Tao, Local well-posedness of the Yang-Mills equation in the temporal gauge below the energy norm, JDE, 189 (2003), 366-382.
doi: 10.1016/S0022-0396(02)00177-8. |
[9] |
J. Yuan, Well-posedness of Maxwell-Chern-Simons-Higgs system in the Lorenz gauge, Discrete and Continuous Dynamical Systems-Series A, 34 (2014), 2389-2403.
doi: 10.3934/dcds.2014.34.2389. |
[10] |
J. Yuan, Local well-posedness of the Maxwell-Chern-Simons-Higgs system in the temporal gauge, Nonlinear Analysis: Theory, Methods & Applications, 99 (2014), 128-135.
doi: 10.1016/j.na.2013.12.018. |
show all references
References:
[1] |
D. Chae and M. Chae, The global existence in the Cauchy problem of the Maxwell-Chern-Simons-Higgs system, Journal of Mathematical physics, 43 (2002), 5470-5482.
doi: 10.1063/1.1507609. |
[2] |
D. Chae and M. Chae, On the Cauchy problem in the Maxwell-Chern-Simons-Higgs system, Tosio Kato's Method and Principle for Evolution Equations in Mathematical Physics (eds. H. Fujita, S. T. Kuroda and H. Okamoto, Distributed by Yurinsha), Sūrikaisekikenkyūsho Kōkyūroku, 1234 (2001), 206-212. |
[3] |
S. Klainerman and M. Machedon, On the Maxwell-Klein-Gordon equation with finite energy, Duke Math. J., 74 (1994), 19-44.
doi: 10.1215/S0012-7094-94-07402-4. |
[4] |
C. Lee, K. Lee and H. Min, Self-dual Maxwell-Chern-Simons solitons, Phys. Lett. B, 252 (1990), 79-83.
doi: 10.1016/0370-2693(90)91084-O. |
[5] |
H. Pecher, Local solutions with infinite energy of the Maxwell-Chern-Simons-Higgs system in Lorenz gauge,, preprint, ().
|
[6] |
S. Selberg and A. Tesfahun, Finite energy global well-posedness of the Maxwell-Klein- Gordon system in Lorenz gauge, Comm. PDE, 35 (2010), 1029-1057.
doi: 10.1080/03605301003717100. |
[7] |
S. Selberg and A. Tesfahun, Global well-posedness of the Chern-Simons-Higgs equations with finite energy, Discrete Cont. Dyn. Syst., 33 (2013), 2531-2546.
doi: 10.3934/dcds.2013.33.2531. |
[8] |
T. Tao, Local well-posedness of the Yang-Mills equation in the temporal gauge below the energy norm, JDE, 189 (2003), 366-382.
doi: 10.1016/S0022-0396(02)00177-8. |
[9] |
J. Yuan, Well-posedness of Maxwell-Chern-Simons-Higgs system in the Lorenz gauge, Discrete and Continuous Dynamical Systems-Series A, 34 (2014), 2389-2403.
doi: 10.3934/dcds.2014.34.2389. |
[10] |
J. Yuan, Local well-posedness of the Maxwell-Chern-Simons-Higgs system in the temporal gauge, Nonlinear Analysis: Theory, Methods & Applications, 99 (2014), 128-135.
doi: 10.1016/j.na.2013.12.018. |
[1] |
Jianjun Yuan. On the well-posedness of Maxwell-Chern-Simons-Higgs system in the Lorenz gauge. Discrete and Continuous Dynamical Systems, 2014, 34 (5) : 2389-2403. doi: 10.3934/dcds.2014.34.2389 |
[2] |
Hartmut Pecher. Local solutions with infinite energy of the Maxwell-Chern-Simons-Higgs system in Lorenz gauge. Discrete and Continuous Dynamical Systems, 2016, 36 (4) : 2193-2204. doi: 10.3934/dcds.2016.36.2193 |
[3] |
Magdalena Czubak, Nina Pikula. Low regularity well-posedness for the 2D Maxwell-Klein-Gordon equation in the Coulomb gauge. Communications on Pure and Applied Analysis, 2014, 13 (4) : 1669-1683. doi: 10.3934/cpaa.2014.13.1669 |
[4] |
Hartmut Pecher. Low regularity solutions for the (2+1)-dimensional Maxwell-Klein-Gordon equations in temporal gauge. Communications on Pure and Applied Analysis, 2016, 15 (6) : 2203-2219. doi: 10.3934/cpaa.2016034 |
[5] |
Nikolaos Bournaveas, Timothy Candy, Shuji Machihara. A note on the Chern-Simons-Dirac equations in the Coulomb gauge. Discrete and Continuous Dynamical Systems, 2014, 34 (7) : 2693-2701. doi: 10.3934/dcds.2014.34.2693 |
[6] |
Hartmut Pecher. Local well-posedness for the Maxwell-Dirac system in temporal gauge. Discrete and Continuous Dynamical Systems, 2022, 42 (6) : 3065-3076. doi: 10.3934/dcds.2022008 |
[7] |
Hartmut Pecher. Almost optimal local well-posedness for the Maxwell-Klein-Gordon system with data in Fourier-Lebesgue spaces. Communications on Pure and Applied Analysis, 2020, 19 (6) : 3303-3321. doi: 10.3934/cpaa.2020146 |
[8] |
Hartmut Pecher. Improved well-posedness results for the Maxwell-Klein-Gordon system in 2D. Communications on Pure and Applied Analysis, 2021, 20 (9) : 2965-2989. doi: 10.3934/cpaa.2021091 |
[9] |
M. Keel, Tristan Roy, Terence Tao. Global well-posedness of the Maxwell-Klein-Gordon equation below the energy norm. Discrete and Continuous Dynamical Systems, 2011, 30 (3) : 573-621. doi: 10.3934/dcds.2011.30.573 |
[10] |
Youngae Lee. Topological solutions in the Maxwell-Chern-Simons model with anomalous magnetic moment. Discrete and Continuous Dynamical Systems, 2018, 38 (3) : 1293-1314. doi: 10.3934/dcds.2018053 |
[11] |
Jeongho Kim, Bora Moon. Hydrodynamic limits of the nonlinear Schrödinger equation with the Chern-Simons gauge fields. Discrete and Continuous Dynamical Systems, 2022, 42 (6) : 2541-2561. doi: 10.3934/dcds.2021202 |
[12] |
Pietro d’Avenia, Lorenzo Pisani, Gaetano Siciliano. Klein-Gordon-Maxwell systems in a bounded domain. Discrete and Continuous Dynamical Systems, 2010, 26 (1) : 135-149. doi: 10.3934/dcds.2010.26.135 |
[13] |
Pierre-Damien Thizy. Klein-Gordon-Maxwell equations in high dimensions. Communications on Pure and Applied Analysis, 2015, 14 (3) : 1097-1125. doi: 10.3934/cpaa.2015.14.1097 |
[14] |
Percy D. Makita. Nonradial solutions for the Klein-Gordon-Maxwell equations. Discrete and Continuous Dynamical Systems, 2012, 32 (6) : 2271-2283. doi: 10.3934/dcds.2012.32.2271 |
[15] |
Sitong Chen, Xianhua Tang. Improved results for Klein-Gordon-Maxwell systems with general nonlinearity. Discrete and Continuous Dynamical Systems, 2018, 38 (5) : 2333-2348. doi: 10.3934/dcds.2018096 |
[16] |
Hartmut Pecher. The Chern-Simons-Higgs and the Chern-Simons-Dirac equations in Fourier-Lebesgue spaces. Discrete and Continuous Dynamical Systems, 2019, 39 (8) : 4875-4893. doi: 10.3934/dcds.2019199 |
[17] |
Hyungjin Huh. Towards the Chern-Simons-Higgs equation with finite energy. Discrete and Continuous Dynamical Systems, 2011, 30 (4) : 1145-1159. doi: 10.3934/dcds.2011.30.1145 |
[18] |
Paulo Cesar Carrião, Patrícia L. Cunha, Olímpio Hiroshi Miyagaki. Existence results for the Klein-Gordon-Maxwell equations in higher dimensions with critical exponents. Communications on Pure and Applied Analysis, 2011, 10 (2) : 709-718. doi: 10.3934/cpaa.2011.10.709 |
[19] |
Sigmund Selberg, Achenef Tesfahun. Global well-posedness of the Chern-Simons-Higgs equations with finite energy. Discrete and Continuous Dynamical Systems, 2013, 33 (6) : 2531-2546. doi: 10.3934/dcds.2013.33.2531 |
[20] |
Jongmin Han, Juhee Sohn. On the self-dual Einstein-Maxwell-Higgs equation on compact surfaces. Discrete and Continuous Dynamical Systems, 2019, 39 (2) : 819-839. doi: 10.3934/dcds.2019034 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]