\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

A Liouville theorem for $\alpha$-harmonic functions in $\mathbb{R}^n_+$

Abstract Related Papers Cited by
  • In this paper, we consider $\alpha$-harmonic functions in the half space $\mathbb{R}^n_+$: \begin{equation} \left\{\begin{array}{ll} (-\triangle)^{\alpha/2} u(x)=0,~u(x)\geq0, & \qquad x\in\mathbb{R}^n_+, \\ u(x)\equiv0, & \qquad x\notin\mathbb{R}^{n}_{+}. \end{array}\right.                      (1) \end{equation} We prove that all solutions of (1) are either identically zero or assuming the form \begin{equation} u(x)=\left\{\begin{array}{ll}Cx_n^{\alpha/2}, & \qquad x\in\mathbb{R}^n_+, \\ 0, & \qquad x\notin\mathbb{R}^{n}_{+}, \end{array}\right. \label{2} \end{equation} for some positive constant $C$.
    Mathematics Subject Classification: Primary: 35S05, 35B53, 35B09.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    K. Bogdan, T. Kulczycki and A. Nowak, Gradient estimates for harmonic and q-harmonic functions of symmetric stable processes, Illinois J. Math., 46 (2002), 541-556.

    [2]

    G. Caristi, L. D'Ambrosio and E. Mitidieri, Representation formulae for solutions to some classes of higher order systems and related Liouville theorems, Milan J. Math., 76 (2008), 27-67.doi: 10.1007/s00032-008-0090-3.

    [3]

    W. Chen, L. D'Ambrosio and Y. Li, Some Liouville theorems for the fractional Laplacian, Nonlinear Anal., 121 (2015), 370-381.doi: 10.1016/j.na.2014.11.003.

    [4]

    W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation, Comm. Pure Appl. Math., 59 (2006), 330-343.doi: 10.1002/cpa.20116.

    [5]

    W. Chen, C. Li and B. Ou, Qualitative properties of solutions for an integral equation, Disc. Cont. Dyn. Sys., 12 (2005), 347-354.

    [6]

    L. Dupaigne and Y. Sire, A Liouville theorem for non-local elliptic equations, Symmetry for elliptic PDEs, Contemp. Math., 528 (2010), 105-114.doi: 10.1090/conm/528/10417.

    [7]

    M. Fall, Entire s-harmonic functions are affine, preprint, arXiv:1407.5934.

    [8]

    M. Fall and T. Weth, Monotonicity and nonexistence results for some fractional elliptic problems in the half space, preprint, arXiv:1309.7230.

    [9]

    Y. Fang and W. Chen, A Liouville type theorem for poly-harmonic Dirichlet problem in a half space, Advances in Math., 229 (2012), 2835-2867.doi: 10.1016/j.aim.2012.01.018.

    [10]

    N. S. Landkof, Foundations of Modern Potential Theory, Translated from the Russian by A. P. Doohovskoy, Die Grundlehren der mathematischen Wissenschaften, Band 180, Springer-Verlag Berlin Heidelberg, New York, 1972.doi: 10.1007/978-3-642-65183-0.

    [11]

    M. Lazzo and P. Schmidt, Nonexistence criteria for polyharmonic boundary-value problems, Analysis, 28 (2008), 449-460.doi: 10.1524/anly.2008.0928.

    [12]

    M. Lazzo and P. Schmidt, Oscillatory radial solutions for subcritical biharmonic equations, J. Differential Equations, 247 (2009), 1479-1504.doi: 10.1016/j.jde.2009.05.005.

    [13]

    Y. Li and M. Zhu, Uniqueness theorems through the method of moving spheres, Duke Math. J., 80 (1995), 383-417.doi: 10.1215/S0012-7094-95-08016-8.

    [14]

    G. Lu and J. Zhu, An overdetermined problem in Riesz-potential and fractional Laplacian, Nonlinear Analysis, 75 (2012), 3036-3048.doi: 10.1016/j.na.2011.11.036.

    [15]

    G. Lu and J. Zhu, The axial symmetry and regularity of solutions to an integral equation in a half space, Pacific J. Math., 253 (2011), 455-473.doi: 10.2140/pjm.2011.253.455.

    [16]

    L. Ma and D. Chen, A Liouville type theorem for an integral system, Comm. Pure Appl. Anal., 5 (2006), 855-859.doi: 10.3934/cpaa.2006.5.855.

    [17]

    E. Mitidieri, Nonexistence of positive solutions of semilinear elliptic systems in $R^N$, Differential & Integral Equations, 9 (1996), 465-479.

    [18]

    L. Modica, A gradient bound and a Liouville theorem for nonlinear Poisson equations, Comm. Pure Appl. Math., 38 (1985), 679-684.doi: 10.1002/cpa.3160380515.

    [19]

    X. Ros-Oton and J. Serra, The Dirichlet problem for the fractional Laplacian: Regularity up to the boundary, J. Math. Pures Appl., 101 (2014), 275-302.doi: 10.1016/j.matpur.2013.06.003.

    [20]

    X. Ros-Oton and J. Serra, Boundary regularity for fully nonlinear integro-differential equations, preprint, arXiv:1404.1197.

    [21]

    L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator, Comm. Pure Appl. Math., 60 (2007), 67-112.doi: 10.1002/cpa.20153.

    [22]

    M. Zhu, Liouville theorems on some indefinite equations, Proc. Roy. Soc. Edinburgh Sect. A Math., 129 (1999), 649-661.doi: 10.1017/S0308210500021569.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(169) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return