March  2016, 36(3): 1737-1757. doi: 10.3934/dcds.2016.36.1737

On the boundedness and decay of solutions for a chemotaxis-haptotaxis system with nonlinear diffusion

1. 

Department of Applied Mathematics Chongqing University of Posts, and Telecommunications, Chongqing 400065, China

2. 

College of Mathematics and Statistics, Chongqing University, Chongqing 401331

3. 

College of Mathematic and Information, China West Normal University, Nanchong 637002, China

Received  December 2014 Revised  May 2015 Published  August 2015

This paper deals with a parabolic-parabolic-ODE chemotaxis haptotaxis system with nonlinear diffusion \begin{eqnarray*}\label{1a} \left\{ \begin{split}{} &u_{t}=\nabla\cdot(\varphi(u)\nabla u)-\chi\nabla\cdot(u\nabla v)-\xi\nabla\cdot(u\nabla w)+\mu u(1-u-w), \\ &v_{t}=\Delta v-v+u, \\ &w_{t}=-vw, \end{split} \right. \end{eqnarray*} under Neumann boundary conditions in a smooth bounded domain $\Omega\subset \mathbb{R}^{2}$, where $\chi$, $\xi$ and $\mu$ are positive parameters and $\varphi(u)$ is a nonlinear diffusion function. Firstly, under the case of non-degenerate diffusion, it is proved that the corresponding initial boundary value problem possesses a unique global classical solution that is uniformly bounded in $\Omega\times(0,\infty)$. Moreover, under the case of degenerate diffusion, we prove that the corresponding problem admits at least one nonnegative global bounded-in-time weak solution. Finally, under some additional conditions, we derive the temporal decay estimate of $w$.
Citation: Pan Zheng, Chunlai Mu, Xiaojun Song. On the boundedness and decay of solutions for a chemotaxis-haptotaxis system with nonlinear diffusion. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1737-1757. doi: 10.3934/dcds.2016.36.1737
References:
[1]

N. D. Alikakos, $L^p$ bounds of solutions of reaction-diffusion equations,, Comm. Partial Differential Equations, 4 (1979), 827. doi: 10.1080/03605307908820113. Google Scholar

[2]

S. Aznavoorian, M. L. Stracke, H. Krutzsch, E. Schiffmann and L. A. Liotta, Signal transduction for chemotaxis and haptotaxis by matrix molecules in tumor cells,, J. Cell Biol., 110 (1990), 1427. doi: 10.1083/jcb.110.4.1427. Google Scholar

[3]

D. Besser, P. Verde, Y. Nagamine and F. Blasi, Signal transduction and u-PA/u-PAR system,, Fibrinolysis, 10 (1996), 215. doi: 10.1016/S0268-9499(96)80018-X. Google Scholar

[4]

M. A. J. Chaplain and G. Lolas, Mathematical modelling of cancer cell invasion of tissue: The role of the urokinase plasminogen activation system,, Math. Models Methods Appl. Sci., 15 (2005), 1685. doi: 10.1142/S0218202505000947. Google Scholar

[5]

M. A. J. Chaplain and G. Lolas, Mathematical modelling of cancer invasion of tissue: Dynamic heterogeneity,, Net. Hetero. Med., 1 (2006), 399. doi: 10.3934/nhm.2006.1.399. Google Scholar

[6]

T. Cieślak and M. Winkler, Finite-time blow-up in a quasilinear system of chemotaxis,, Nonlinearity, 21 (2008), 1057. doi: 10.1088/0951-7715/21/5/009. Google Scholar

[7]

A. Friedman, Partial Differential Equations,, Holt, (1969). Google Scholar

[8]

K. Fujie, M. Winkler and T. Yokota, Blow-up prevention by logistic sources in a parabolic-elliptic Keller-Segel system with singular sensitivity,, Nonlinear Anal., 109 (2014), 56. doi: 10.1016/j.na.2014.06.017. Google Scholar

[9]

K. Fujie, M. Winkler and T. Yokota, Boundedness of solutions to parabolic-elliptic Keller-Segel systems with signal-dependent sensitivity,, Math. Methods Appl. Sci., 38 (2015), 1212. doi: 10.1002/mma.3149. Google Scholar

[10]

K. Fujie and T. Yokota, Boundedness of solutions to parabolic-elliptic chemotaxis-growth systems with signal-dependent sensitivity,, Math. Bohem., 139 (2014), 639. Google Scholar

[11]

T. Hillen and K. J. Painter, A user's guide to PDE models for chemotaxis,, J. Math. Biol., 58 (2009), 183. doi: 10.1007/s00285-008-0201-3. Google Scholar

[12]

T. Hillen, K. J. Painter and M. Winkler, Convergence of a cancer invasion model to a logistic chemotaxis model,, Math. Models Methods Appl. Sci., 23 (2013), 165. doi: 10.1142/S0218202512500480. Google Scholar

[13]

D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences I,, Jahresber. Deutsch. Math. -Verein., 105 (2003), 103. Google Scholar

[14]

D. Horstmann, From 1970 until present: the Keller-Segel model in chemotaxis and its consequences II,, Jahresber. Deutsch. Math. -Verein., 106 (2004), 51. Google Scholar

[15]

D. Horstmann and M. Winkler, Boundedness vs. blow-up in a chemotaxis system,, J. Differential Equations, 215 (2005), 52. doi: 10.1016/j.jde.2004.10.022. Google Scholar

[16]

S. Ishida, K. Seki and T. Yokota, Boundedness in quasilinear Keller-Segel systems of parabolic-parabolic type on non-convex bounded domains,, J. Differential Equations, 256 (2014), 2993. doi: 10.1016/j.jde.2014.01.028. Google Scholar

[17]

W. Jäger and S. Luckhaus, On explosions of solutions to a system of partial differential equations modelling chemotaxis,, Trans. Amer. Math. Soc., 329 (1992), 819. doi: 10.1090/S0002-9947-1992-1046835-6. Google Scholar

[18]

E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability,, J. Theor. Biol., 26 (1970), 399. doi: 10.1016/0022-5193(70)90092-5. Google Scholar

[19]

R. Kowalczyk and Z. Szymańska, On the global existence of solutions to an aggregation model,, J. Math. Anal. Appl., 343 (2008), 379. doi: 10.1016/j.jmaa.2008.01.005. Google Scholar

[20]

D. Liu and Y. Tao, Global boundedness in a fully parabolic attraction-repulsion chemotaxis model,, Math. Methods Appl. Sci., 38 (2015), 2537. doi: 10.1002/mma.3240. Google Scholar

[21]

L. Nirenberg, An extended interpolation inequality,, Ann. Sc. Norm. Super. Pisa Cl. Sci., 20 (1966), 733. Google Scholar

[22]

C. S. Patlak, Random walk with persistence and external bias,, Bull. Math. Biophys., 15 (1953), 311. doi: 10.1007/BF02476407. Google Scholar

[23]

B. Perthame, Transport Equations in Biology,, Birkhäser-BaselVerlag, (2007). Google Scholar

[24]

Y. Tao, Global existence of classical solutions to a combined chemotaxis-haptotaxis model with logistic source,, J. Math. Anal. Appl., 354 (2009), 60. doi: 10.1016/j.jmaa.2008.12.039. Google Scholar

[25]

Y. Tao, Boundedness in a two-dimensional chemotaxis-haptotaxis system,, , (2014). Google Scholar

[26]

Y. Tao and M. Wang, Global solution for a chemotactic-haptotactic model of cancer invasion,, Nonlinearity, 21 (2008), 2221. doi: 10.1088/0951-7715/21/10/002. Google Scholar

[27]

Y. Tao and M. Wang, A combined chemotaxis-haptotaxis system: The role of logistic source,, SIAM J. Math. Anal., 41 (2009), 1533. doi: 10.1137/090751542. Google Scholar

[28]

Y. Tao and Z. A. Wang, Competing effects of attraction vs. repulsion in chemotaxis,, Math. Models Methods Appl. Sci., 23 (2013), 1. doi: 10.1142/S0218202512500443. Google Scholar

[29]

Y. Tao and M. Winkler, A chemotaxis-haptotaxis model: The roles of nonlinear diffusion and logistic source,, SIAM J. Math. Anal., 43 (2011), 685. doi: 10.1137/100802943. Google Scholar

[30]

Y. Tao and M. Winkler, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity,, J. Differential Equations, 252 (2012), 692. doi: 10.1016/j.jde.2011.08.019. Google Scholar

[31]

Y. Tao and M. Winkler, Dominance of chemotaxis in a chemotaxis-haptotaxis model,, Nonlinearity, 27 (2014), 1225. doi: 10.1088/0951-7715/27/6/1225. Google Scholar

[32]

J. I. Tello and M. Winkler, A chemotaxis system with logistic source,, Comm. Partial Differential Equations, 32 (2007), 849. doi: 10.1080/03605300701319003. Google Scholar

[33]

R. Temam, Navier-Stokes Equations. Theory and Numerical Analysis,, Stud. Math. Appl., (1977). Google Scholar

[34]

L. Wang, C. Mu and P. Zheng, On a quasilinear parabolic-elliptic chemotaxis system with logistic source,, J. Differential Equations, 256 (2014), 1847. doi: 10.1016/j.jde.2013.12.007. Google Scholar

[35]

Z. A. Wang, M. Winkler and D. Wrzosek, Global regularity vs. infinite-time singularity formation in a chemotaxis model with volume-filling effect and degenerate diffusion,, SIAM J. Math. Anal., 44 (2012), 3502. doi: 10.1137/110853972. Google Scholar

[36]

M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model,, J. Differential Equations, 248 (2010), 2889. doi: 10.1016/j.jde.2010.02.008. Google Scholar

[37]

M. Winkler and K. C. Djie, Boundedness and finite-time collapse in a chemotaxis system with volume-filling effect,, Nonlinear Anal., 72 (2010), 1044. doi: 10.1016/j.na.2009.07.045. Google Scholar

show all references

References:
[1]

N. D. Alikakos, $L^p$ bounds of solutions of reaction-diffusion equations,, Comm. Partial Differential Equations, 4 (1979), 827. doi: 10.1080/03605307908820113. Google Scholar

[2]

S. Aznavoorian, M. L. Stracke, H. Krutzsch, E. Schiffmann and L. A. Liotta, Signal transduction for chemotaxis and haptotaxis by matrix molecules in tumor cells,, J. Cell Biol., 110 (1990), 1427. doi: 10.1083/jcb.110.4.1427. Google Scholar

[3]

D. Besser, P. Verde, Y. Nagamine and F. Blasi, Signal transduction and u-PA/u-PAR system,, Fibrinolysis, 10 (1996), 215. doi: 10.1016/S0268-9499(96)80018-X. Google Scholar

[4]

M. A. J. Chaplain and G. Lolas, Mathematical modelling of cancer cell invasion of tissue: The role of the urokinase plasminogen activation system,, Math. Models Methods Appl. Sci., 15 (2005), 1685. doi: 10.1142/S0218202505000947. Google Scholar

[5]

M. A. J. Chaplain and G. Lolas, Mathematical modelling of cancer invasion of tissue: Dynamic heterogeneity,, Net. Hetero. Med., 1 (2006), 399. doi: 10.3934/nhm.2006.1.399. Google Scholar

[6]

T. Cieślak and M. Winkler, Finite-time blow-up in a quasilinear system of chemotaxis,, Nonlinearity, 21 (2008), 1057. doi: 10.1088/0951-7715/21/5/009. Google Scholar

[7]

A. Friedman, Partial Differential Equations,, Holt, (1969). Google Scholar

[8]

K. Fujie, M. Winkler and T. Yokota, Blow-up prevention by logistic sources in a parabolic-elliptic Keller-Segel system with singular sensitivity,, Nonlinear Anal., 109 (2014), 56. doi: 10.1016/j.na.2014.06.017. Google Scholar

[9]

K. Fujie, M. Winkler and T. Yokota, Boundedness of solutions to parabolic-elliptic Keller-Segel systems with signal-dependent sensitivity,, Math. Methods Appl. Sci., 38 (2015), 1212. doi: 10.1002/mma.3149. Google Scholar

[10]

K. Fujie and T. Yokota, Boundedness of solutions to parabolic-elliptic chemotaxis-growth systems with signal-dependent sensitivity,, Math. Bohem., 139 (2014), 639. Google Scholar

[11]

T. Hillen and K. J. Painter, A user's guide to PDE models for chemotaxis,, J. Math. Biol., 58 (2009), 183. doi: 10.1007/s00285-008-0201-3. Google Scholar

[12]

T. Hillen, K. J. Painter and M. Winkler, Convergence of a cancer invasion model to a logistic chemotaxis model,, Math. Models Methods Appl. Sci., 23 (2013), 165. doi: 10.1142/S0218202512500480. Google Scholar

[13]

D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences I,, Jahresber. Deutsch. Math. -Verein., 105 (2003), 103. Google Scholar

[14]

D. Horstmann, From 1970 until present: the Keller-Segel model in chemotaxis and its consequences II,, Jahresber. Deutsch. Math. -Verein., 106 (2004), 51. Google Scholar

[15]

D. Horstmann and M. Winkler, Boundedness vs. blow-up in a chemotaxis system,, J. Differential Equations, 215 (2005), 52. doi: 10.1016/j.jde.2004.10.022. Google Scholar

[16]

S. Ishida, K. Seki and T. Yokota, Boundedness in quasilinear Keller-Segel systems of parabolic-parabolic type on non-convex bounded domains,, J. Differential Equations, 256 (2014), 2993. doi: 10.1016/j.jde.2014.01.028. Google Scholar

[17]

W. Jäger and S. Luckhaus, On explosions of solutions to a system of partial differential equations modelling chemotaxis,, Trans. Amer. Math. Soc., 329 (1992), 819. doi: 10.1090/S0002-9947-1992-1046835-6. Google Scholar

[18]

E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability,, J. Theor. Biol., 26 (1970), 399. doi: 10.1016/0022-5193(70)90092-5. Google Scholar

[19]

R. Kowalczyk and Z. Szymańska, On the global existence of solutions to an aggregation model,, J. Math. Anal. Appl., 343 (2008), 379. doi: 10.1016/j.jmaa.2008.01.005. Google Scholar

[20]

D. Liu and Y. Tao, Global boundedness in a fully parabolic attraction-repulsion chemotaxis model,, Math. Methods Appl. Sci., 38 (2015), 2537. doi: 10.1002/mma.3240. Google Scholar

[21]

L. Nirenberg, An extended interpolation inequality,, Ann. Sc. Norm. Super. Pisa Cl. Sci., 20 (1966), 733. Google Scholar

[22]

C. S. Patlak, Random walk with persistence and external bias,, Bull. Math. Biophys., 15 (1953), 311. doi: 10.1007/BF02476407. Google Scholar

[23]

B. Perthame, Transport Equations in Biology,, Birkhäser-BaselVerlag, (2007). Google Scholar

[24]

Y. Tao, Global existence of classical solutions to a combined chemotaxis-haptotaxis model with logistic source,, J. Math. Anal. Appl., 354 (2009), 60. doi: 10.1016/j.jmaa.2008.12.039. Google Scholar

[25]

Y. Tao, Boundedness in a two-dimensional chemotaxis-haptotaxis system,, , (2014). Google Scholar

[26]

Y. Tao and M. Wang, Global solution for a chemotactic-haptotactic model of cancer invasion,, Nonlinearity, 21 (2008), 2221. doi: 10.1088/0951-7715/21/10/002. Google Scholar

[27]

Y. Tao and M. Wang, A combined chemotaxis-haptotaxis system: The role of logistic source,, SIAM J. Math. Anal., 41 (2009), 1533. doi: 10.1137/090751542. Google Scholar

[28]

Y. Tao and Z. A. Wang, Competing effects of attraction vs. repulsion in chemotaxis,, Math. Models Methods Appl. Sci., 23 (2013), 1. doi: 10.1142/S0218202512500443. Google Scholar

[29]

Y. Tao and M. Winkler, A chemotaxis-haptotaxis model: The roles of nonlinear diffusion and logistic source,, SIAM J. Math. Anal., 43 (2011), 685. doi: 10.1137/100802943. Google Scholar

[30]

Y. Tao and M. Winkler, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity,, J. Differential Equations, 252 (2012), 692. doi: 10.1016/j.jde.2011.08.019. Google Scholar

[31]

Y. Tao and M. Winkler, Dominance of chemotaxis in a chemotaxis-haptotaxis model,, Nonlinearity, 27 (2014), 1225. doi: 10.1088/0951-7715/27/6/1225. Google Scholar

[32]

J. I. Tello and M. Winkler, A chemotaxis system with logistic source,, Comm. Partial Differential Equations, 32 (2007), 849. doi: 10.1080/03605300701319003. Google Scholar

[33]

R. Temam, Navier-Stokes Equations. Theory and Numerical Analysis,, Stud. Math. Appl., (1977). Google Scholar

[34]

L. Wang, C. Mu and P. Zheng, On a quasilinear parabolic-elliptic chemotaxis system with logistic source,, J. Differential Equations, 256 (2014), 1847. doi: 10.1016/j.jde.2013.12.007. Google Scholar

[35]

Z. A. Wang, M. Winkler and D. Wrzosek, Global regularity vs. infinite-time singularity formation in a chemotaxis model with volume-filling effect and degenerate diffusion,, SIAM J. Math. Anal., 44 (2012), 3502. doi: 10.1137/110853972. Google Scholar

[36]

M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model,, J. Differential Equations, 248 (2010), 2889. doi: 10.1016/j.jde.2010.02.008. Google Scholar

[37]

M. Winkler and K. C. Djie, Boundedness and finite-time collapse in a chemotaxis system with volume-filling effect,, Nonlinear Anal., 72 (2010), 1044. doi: 10.1016/j.na.2009.07.045. Google Scholar

[1]

Pan Zheng. Global boundedness and decay for a multi-dimensional chemotaxis-haptotaxis system with nonlinear diffusion. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 2039-2056. doi: 10.3934/dcdsb.2016035

[2]

Jiashan Zheng. Boundedness of solutions to a quasilinear higher-dimensional chemotaxis-haptotaxis model with nonlinear diffusion. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 627-643. doi: 10.3934/dcds.2017026

[3]

Chunhua Jin. Boundedness and global solvability to a chemotaxis-haptotaxis model with slow and fast diffusion. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1675-1688. doi: 10.3934/dcdsb.2018069

[4]

Youshan Tao, Michael Winkler. A chemotaxis-haptotaxis system with haptoattractant remodeling: Boundedness enforced by mild saturation of signal production. Communications on Pure & Applied Analysis, 2019, 18 (4) : 2047-2067. doi: 10.3934/cpaa.2019092

[5]

Ling Liu, Jiashan Zheng. Global existence and boundedness of solution of a parabolic-parabolic-ODE chemotaxis-haptotaxis model with (generalized) logistic source. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3357-3377. doi: 10.3934/dcdsb.2018324

[6]

Tariel Sanikidze, A.F. Tedeev. On the temporal decay estimates for the degenerate parabolic system. Communications on Pure & Applied Analysis, 2013, 12 (4) : 1755-1768. doi: 10.3934/cpaa.2013.12.1755

[7]

Yilong Wang, Xuande Zhang. On a parabolic-elliptic chemotaxis-growth system with nonlinear diffusion. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 321-328. doi: 10.3934/dcdss.2020018

[8]

Liangchen Wang, Yuhuan Li, Chunlai Mu. Boundedness in a parabolic-parabolic quasilinear chemotaxis system with logistic source. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 789-802. doi: 10.3934/dcds.2014.34.789

[9]

Wei Wang, Yan Li, Hao Yu. Global boundedness in higher dimensions for a fully parabolic chemotaxis system with singular sensitivity. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3663-3669. doi: 10.3934/dcdsb.2017147

[10]

Xie Li, Yilong Wang. Boundedness in a two-species chemotaxis parabolic system with two chemicals. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2717-2729. doi: 10.3934/dcdsb.2017132

[11]

Johannes Lankeit, Yulan Wang. Global existence, boundedness and stabilization in a high-dimensional chemotaxis system with consumption. Discrete & Continuous Dynamical Systems - A, 2017, 37 (12) : 6099-6121. doi: 10.3934/dcds.2017262

[12]

Mengyao Ding, Wei Wang. Global boundedness in a quasilinear fully parabolic chemotaxis system with indirect signal production. Discrete & Continuous Dynamical Systems - B, 2019, 24 (9) : 4665-4684. doi: 10.3934/dcdsb.2018328

[13]

Liangchen Wang, Jing Zhang, Chunlai Mu, Xuegang Hu. Boundedness and stabilization in a two-species chemotaxis system with two chemicals. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-31. doi: 10.3934/dcdsb.2019178

[14]

Marcel Freitag. Global existence and boundedness in a chemorepulsion system with superlinear diffusion. Discrete & Continuous Dynamical Systems - A, 2018, 38 (11) : 5943-5961. doi: 10.3934/dcds.2018258

[15]

Feng Li, Yuxiang Li. Global existence of weak solution in a chemotaxis-fluid system with nonlinear diffusion and rotational flux. Discrete & Continuous Dynamical Systems - B, 2019, 24 (10) : 5409-5436. doi: 10.3934/dcdsb.2019064

[16]

Xi Wang, Zuhan Liu, Ling Zhou. Asymptotic decay for the classical solution of the chemotaxis system with fractional Laplacian in high dimensions. Discrete & Continuous Dynamical Systems - B, 2018, 23 (9) : 4003-4020. doi: 10.3934/dcdsb.2018121

[17]

Qi Wang, Jingyue Yang, Feng Yu. Boundedness in logistic Keller-Segel models with nonlinear diffusion and sensitivity functions. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 5021-5036. doi: 10.3934/dcds.2017216

[18]

Yilong Wang, Zhaoyin Xiang. Boundedness in a quasilinear 2D parabolic-parabolic attraction-repulsion chemotaxis system. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1953-1973. doi: 10.3934/dcdsb.2016031

[19]

Pan Zheng, Chunlai Mu, Xuegang Hu. Boundedness and blow-up for a chemotaxis system with generalized volume-filling effect and logistic source. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 2299-2323. doi: 10.3934/dcds.2015.35.2299

[20]

Youshan Tao, Michael Winkler. Boundedness vs.blow-up in a two-species chemotaxis system with two chemicals. Discrete & Continuous Dynamical Systems - B, 2015, 20 (9) : 3165-3183. doi: 10.3934/dcdsb.2015.20.3165

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (9)

Other articles
by authors

[Back to Top]