April  2016, 36(4): 1759-1788. doi: 10.3934/dcds.2016.36.1759

Sharp estimates for fully bubbling solutions of $B_2$ Toda system

1. 

Department of Mathematics, University of British Columbia, Vancouver, B.C., V6T 1Z2, Canada

Received  January 2015 Revised  May 2015 Published  September 2015

In this paper, we obtain sharp estimates of fully bubbling solutions of the $B_2$ Toda system in a compact Riemann surface. Our main goal in this paper are (i) to obtain sharp convergence rate, (ii) to completely determine the location of bubbles, (iii) to derive the $\partial_z^2$ condition.
Citation: Weiwei Ao. Sharp estimates for fully bubbling solutions of $B_2$ Toda system. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 1759-1788. doi: 10.3934/dcds.2016.36.1759
References:
[1]

W. W. Ao, C. S. Lin and J. C. Wei, On Non-topological Solutions of the $A_2$ and $B_2$ Chern-Simons System,, Memoirs of Amer. Math. Soc., ().   Google Scholar

[2]

W. W. Ao, C. S. Lin and J. C. Wei, On Non-topological Solutions of the $G_2$ Chern-Simons System,, Comm. Analysis and Geometry, ().   Google Scholar

[3]

D. Bartolucci, C. C. Chen, C. S. Lin and G. Tarantello, Profile of blow-up solutions to mean field equations with singular data., Comm. Partial Diff. Equ., 29 (2004), 1241.   Google Scholar

[4]

J. Bolton, G. R. Jensen, M. Rigoli and L. M. Woodward, On conformal minimal immersions of $S^2$ into $CP^n$,, Mathematische Annalen, 279 (1988), 599.  doi: 10.1007/BF01458531.  Google Scholar

[5]

L. Battaglia, A. Jevnikar, A. Malchiodi and D. Ruiz, A general existence result for the Toda system on compact surfaces,, Advances in Mathematics, 285 (2015), 937.  doi: 10.1016/j.aim.2015.07.036.  Google Scholar

[6]

L. Battaglia and A. Malchiodi, A Moser-Trudinger inequality for the singular Toda system,, Bull. Inst. Math. Acad. Sin., 9 (2014), 9.   Google Scholar

[7]

D. Chae and O. Y. Imanuvilov, The existence of non-topological multi-vortex solutions in the relativistic self-dual Chern-Simons theory,, Comm. Math. Phys., 215 (2000), 119.  doi: 10.1007/s002200000302.  Google Scholar

[8]

C. C. Chen and C. S. Lin, Sharp estimates for solutions of multi-bubbles in compact Riemann surfaces,, Comm. Pure Appl. Math., 55 (2002), 728.  doi: 10.1002/cpa.3014.  Google Scholar

[9]

C. C. Chen and C. S. Lin, Topological degree for a mean field equation on Riemann surfaces,, Comm. Pure Appl. Math., 56 (2003), 1667.  doi: 10.1002/cpa.10107.  Google Scholar

[10]

C. C. Chen and C. S. Lin, Mean field equations of Liouville type with singular data: Sharper estimates,, Discrete Contin. Dyn. Syst., 28 (2010), 1237.  doi: 10.3934/dcds.2010.28.1237.  Google Scholar

[11]

C. C. Chen and C. S. Lin, Mean field equations of Liouville type with the singular data: Topological formula,, Comm. Pure Appl. Math., 68 (2015), 887.  doi: 10.1002/cpa.21532.  Google Scholar

[12]

S. S. Chern and J. G. Wolfson, Maps of the two-sphere into a complex Grassmann manifold. II,, Annal. Math., 125 (1987), 301.  doi: 10.2307/1971312.  Google Scholar

[13]

G. Dunne, Mass degeneracies in self-dual models,, Phys. Lett. B, 345 (1995), 452.  doi: 10.1016/0370-2693(94)01649-W.  Google Scholar

[14]

G. Dunne, Self-dual Chern-Simons Theories,, Lect. Note Phys., 36 (1995).  doi: 10.1007/978-3-540-44777-1.  Google Scholar

[15]

G. Dunne, Vacuum mass spectra for $SU(N)$ self-dual Chern-Simons-Higgs,, Nucl. Phys. B, 433 (1995), 333.  doi: 10.1016/0550-3213(94)00476-U.  Google Scholar

[16]

A. Doliwa, Holomorphic curves and Toda system,, Lett. Math. Phys., 39 (1997), 21.  doi: 10.1007/s11005-997-1032-7.  Google Scholar

[17]

P. Griffiths and J. Harris, Principles of Algebraic Geometry,, Wiley-Interscience, (1978).   Google Scholar

[18]

M. A. Guest, Harmonic Maps, Loop Groups, and Integrable Systems,, London Mathematical Society Student Texts, (1997).  doi: 10.1017/CBO9781139174848.  Google Scholar

[19]

J. Jost, C. S. Lin and G. F. Wang, Analytic aspects of the Toda system. II. Bubbling behavior and existence of solutions,, Comm. Pure Appl. Math., 59 (2006), 526.  doi: 10.1002/cpa.20099.  Google Scholar

[20]

J. Jost and G. F. Wang, Classification of solutions of a Toda system in $\mathbbR^2$,, Int. Math. Res. Not., 6 (2002), 277.  doi: 10.1155/S1073792802105022.  Google Scholar

[21]

T. J. Kuo and C. S. Lin, Sharp estimate of solutions to mean field equation with integer singular sources: the first order approximation,, preprint, (2013).   Google Scholar

[22]

Y. Y. Li, Harnack type inequality: The method of moving planes,, Comm. Math. Phys., 200 (1999), 421.  doi: 10.1007/s002200050536.  Google Scholar

[23]

C. S. Lin and C. L. Wang, Elliptic functions, Green functions and the mean field equations on tori,, Annal. Math., 172 (2010), 911.  doi: 10.4007/annals.2010.172.911.  Google Scholar

[24]

C. S. Lin and J. C. Wei, Sharp estimates for bubbling solutions of a fourth order mean field equation,, Annali della Scuola Normale Superiore di Pisa Classe di Scienze, 6 (2007), 599.   Google Scholar

[25]

C. S。 Lin and J. C. Wei, Locating the peaks of solutions via the maximum principle. II. A local version of the method of moving planes,, Comm. Pure Appl. Math., 56 (2003), 784.  doi: 10.1002/cpa.10073.  Google Scholar

[26]

C. S. Lin and S. Yan, Existence of bubbling solutions for Chern-Simons model on a torus,, Arch. Ration. Mech. Anal., 207 (2013), 353.  doi: 10.1007/s00205-012-0575-7.  Google Scholar

[27]

C. S. Lin and S. Yan, Bubbling solutions for the $SU(3)$ Chern-Simon model on a torus,, Comm. Pure Appl. Math, 66 (2013), 991.  doi: 10.1002/cpa.21454.  Google Scholar

[28]

C. S. Lin and S. Yan, Bubbling solutions for relativistic Abelian Chern-Simons model on a torus,, Comm. Math. Phys., 297 (2010), 733.  doi: 10.1007/s00220-010-1056-1.  Google Scholar

[29]

C. S. Lin, L. P. Wang and J. C. Wei, Topological degree for solutions of a fourth order mean field equation,, Math. Zeit., 268 (2011), 675.  doi: 10.1007/s00209-010-0690-9.  Google Scholar

[30]

C. S. Lin, J. C. Wei and C. Zhao, Sharp estimates for fully bubbling solutions of a $SU(3)$ Toda system,, Geom. Funct. Anal., 22 (2012), 1591.  doi: 10.1007/s00039-012-0193-4.  Google Scholar

[31]

C. S. Lin, J. C. Wei and C. Y. Zhao, Asymptotic behavior of $SU(3)$ Toda system in a bounded domain},, Manus. Math., 137 (2012), 1.  doi: 10.1007/s00229-011-0451-z.  Google Scholar

[32]

C. S. Lin, J. C. Wei and D. Ye, Classification and non-degeneracy of $SU(n + 1)$ Toda system with singular sources,, Invent. Math., 190 (2012), 169.  doi: 10.1007/s00222-012-0378-3.  Google Scholar

[33]

C. S. Lin, J. C. Wei and L. Zhang, Classification of blowup limits for $SU(3)$ Toda singular Toda system,, Analysis and PDE, 8 (2015), 807.  doi: 10.2140/apde.2015.8.807.  Google Scholar

[34]

C. S. Lin, J. C. Wei and L. Zhang, Local profile of fully bubbling solutions to $SU(n+1)$ Toda system,, preprint, ().   Google Scholar

[35]

C. S. Lin and L. Zhang, Profile of bubbling solutions to a Liouville system,, Annal. Inst. H. Poincar Anal. Non Lineaire, 27 (2010), 117.  doi: 10.1016/j.anihpc.2009.09.001.  Google Scholar

[36]

C. S. Lin and L. Zhang, A topological degree counting for some Liouville systems of mean field equations,, Comm. Pure Appl. Math., 64 (2011), 556.  doi: 10.1002/cpa.20355.  Google Scholar

[37]

C. S. Lin and L. Zhang, On Liouville systems at critical parameters, part 1: One bubble,, J. Funct. Anal., 264 (2013), 2584.  doi: 10.1016/j.jfa.2013.02.022.  Google Scholar

[38]

A. Malchiodi and D. Ruiz, New improved Moser-Trudinger inequalities and singular Liouville equations on compact surfaces,, Geom. Funct. Anal., 21 (2011), 1196.  doi: 10.1007/s00039-011-0134-7.  Google Scholar

[39]

A. Malchiodi and D. Ruiz, A variational analysis of the Toda system on compact surfaces,, Comm. Pure Appl. Math., 66 (2013), 332.  doi: 10.1002/cpa.21433.  Google Scholar

[40]

A. Malchiodi and C. B. Ndiaye, Some existence results for the Toda system on closed surfaces,, Atti Dell'accademia Pontificia Dei Nuovi Lincei, 18 (2007), 391.  doi: 10.4171/RLM/504.  Google Scholar

[41]

M. Nolasco and G. Tarantello, Double vortex condensates in the Chern-Simons theory,, Cal. Var. Partial Diff. Equ., 9 (1999), 31.  doi: 10.1007/s005260050132.  Google Scholar

[42]

M. Nolasco and G. Tarantello, Vortex condensates for the $SU(3)$ Chern-Simons theory,, Comm. Math. Phys., 213 (2000), 599.  doi: 10.1007/s002200000252.  Google Scholar

[43]

F. Robert and J. C. Wei, Asymptotic behavior of a fourth order mean field equation with Dirichlet boundary condition,, Indiana University Math. J., 57 (2008), 2039.  doi: 10.1512/iumj.2008.57.3324.  Google Scholar

[44]

J. C. Wei, Asymptotic behavior of a nonlinear fourth order eigenvalue problem,, Comm. Partial Diff. Equ., 21 (1996), 1451.  doi: 10.1080/03605309608821234.  Google Scholar

[45]

Y. S. Yang, The relativistic non-abelian Chern-Simons equation,, Comm. Math. Phys., 186 (1999), 199.  doi: 10.1007/BF02885678.  Google Scholar

show all references

References:
[1]

W. W. Ao, C. S. Lin and J. C. Wei, On Non-topological Solutions of the $A_2$ and $B_2$ Chern-Simons System,, Memoirs of Amer. Math. Soc., ().   Google Scholar

[2]

W. W. Ao, C. S. Lin and J. C. Wei, On Non-topological Solutions of the $G_2$ Chern-Simons System,, Comm. Analysis and Geometry, ().   Google Scholar

[3]

D. Bartolucci, C. C. Chen, C. S. Lin and G. Tarantello, Profile of blow-up solutions to mean field equations with singular data., Comm. Partial Diff. Equ., 29 (2004), 1241.   Google Scholar

[4]

J. Bolton, G. R. Jensen, M. Rigoli and L. M. Woodward, On conformal minimal immersions of $S^2$ into $CP^n$,, Mathematische Annalen, 279 (1988), 599.  doi: 10.1007/BF01458531.  Google Scholar

[5]

L. Battaglia, A. Jevnikar, A. Malchiodi and D. Ruiz, A general existence result for the Toda system on compact surfaces,, Advances in Mathematics, 285 (2015), 937.  doi: 10.1016/j.aim.2015.07.036.  Google Scholar

[6]

L. Battaglia and A. Malchiodi, A Moser-Trudinger inequality for the singular Toda system,, Bull. Inst. Math. Acad. Sin., 9 (2014), 9.   Google Scholar

[7]

D. Chae and O. Y. Imanuvilov, The existence of non-topological multi-vortex solutions in the relativistic self-dual Chern-Simons theory,, Comm. Math. Phys., 215 (2000), 119.  doi: 10.1007/s002200000302.  Google Scholar

[8]

C. C. Chen and C. S. Lin, Sharp estimates for solutions of multi-bubbles in compact Riemann surfaces,, Comm. Pure Appl. Math., 55 (2002), 728.  doi: 10.1002/cpa.3014.  Google Scholar

[9]

C. C. Chen and C. S. Lin, Topological degree for a mean field equation on Riemann surfaces,, Comm. Pure Appl. Math., 56 (2003), 1667.  doi: 10.1002/cpa.10107.  Google Scholar

[10]

C. C. Chen and C. S. Lin, Mean field equations of Liouville type with singular data: Sharper estimates,, Discrete Contin. Dyn. Syst., 28 (2010), 1237.  doi: 10.3934/dcds.2010.28.1237.  Google Scholar

[11]

C. C. Chen and C. S. Lin, Mean field equations of Liouville type with the singular data: Topological formula,, Comm. Pure Appl. Math., 68 (2015), 887.  doi: 10.1002/cpa.21532.  Google Scholar

[12]

S. S. Chern and J. G. Wolfson, Maps of the two-sphere into a complex Grassmann manifold. II,, Annal. Math., 125 (1987), 301.  doi: 10.2307/1971312.  Google Scholar

[13]

G. Dunne, Mass degeneracies in self-dual models,, Phys. Lett. B, 345 (1995), 452.  doi: 10.1016/0370-2693(94)01649-W.  Google Scholar

[14]

G. Dunne, Self-dual Chern-Simons Theories,, Lect. Note Phys., 36 (1995).  doi: 10.1007/978-3-540-44777-1.  Google Scholar

[15]

G. Dunne, Vacuum mass spectra for $SU(N)$ self-dual Chern-Simons-Higgs,, Nucl. Phys. B, 433 (1995), 333.  doi: 10.1016/0550-3213(94)00476-U.  Google Scholar

[16]

A. Doliwa, Holomorphic curves and Toda system,, Lett. Math. Phys., 39 (1997), 21.  doi: 10.1007/s11005-997-1032-7.  Google Scholar

[17]

P. Griffiths and J. Harris, Principles of Algebraic Geometry,, Wiley-Interscience, (1978).   Google Scholar

[18]

M. A. Guest, Harmonic Maps, Loop Groups, and Integrable Systems,, London Mathematical Society Student Texts, (1997).  doi: 10.1017/CBO9781139174848.  Google Scholar

[19]

J. Jost, C. S. Lin and G. F. Wang, Analytic aspects of the Toda system. II. Bubbling behavior and existence of solutions,, Comm. Pure Appl. Math., 59 (2006), 526.  doi: 10.1002/cpa.20099.  Google Scholar

[20]

J. Jost and G. F. Wang, Classification of solutions of a Toda system in $\mathbbR^2$,, Int. Math. Res. Not., 6 (2002), 277.  doi: 10.1155/S1073792802105022.  Google Scholar

[21]

T. J. Kuo and C. S. Lin, Sharp estimate of solutions to mean field equation with integer singular sources: the first order approximation,, preprint, (2013).   Google Scholar

[22]

Y. Y. Li, Harnack type inequality: The method of moving planes,, Comm. Math. Phys., 200 (1999), 421.  doi: 10.1007/s002200050536.  Google Scholar

[23]

C. S. Lin and C. L. Wang, Elliptic functions, Green functions and the mean field equations on tori,, Annal. Math., 172 (2010), 911.  doi: 10.4007/annals.2010.172.911.  Google Scholar

[24]

C. S. Lin and J. C. Wei, Sharp estimates for bubbling solutions of a fourth order mean field equation,, Annali della Scuola Normale Superiore di Pisa Classe di Scienze, 6 (2007), 599.   Google Scholar

[25]

C. S。 Lin and J. C. Wei, Locating the peaks of solutions via the maximum principle. II. A local version of the method of moving planes,, Comm. Pure Appl. Math., 56 (2003), 784.  doi: 10.1002/cpa.10073.  Google Scholar

[26]

C. S. Lin and S. Yan, Existence of bubbling solutions for Chern-Simons model on a torus,, Arch. Ration. Mech. Anal., 207 (2013), 353.  doi: 10.1007/s00205-012-0575-7.  Google Scholar

[27]

C. S. Lin and S. Yan, Bubbling solutions for the $SU(3)$ Chern-Simon model on a torus,, Comm. Pure Appl. Math, 66 (2013), 991.  doi: 10.1002/cpa.21454.  Google Scholar

[28]

C. S. Lin and S. Yan, Bubbling solutions for relativistic Abelian Chern-Simons model on a torus,, Comm. Math. Phys., 297 (2010), 733.  doi: 10.1007/s00220-010-1056-1.  Google Scholar

[29]

C. S. Lin, L. P. Wang and J. C. Wei, Topological degree for solutions of a fourth order mean field equation,, Math. Zeit., 268 (2011), 675.  doi: 10.1007/s00209-010-0690-9.  Google Scholar

[30]

C. S. Lin, J. C. Wei and C. Zhao, Sharp estimates for fully bubbling solutions of a $SU(3)$ Toda system,, Geom. Funct. Anal., 22 (2012), 1591.  doi: 10.1007/s00039-012-0193-4.  Google Scholar

[31]

C. S. Lin, J. C. Wei and C. Y. Zhao, Asymptotic behavior of $SU(3)$ Toda system in a bounded domain},, Manus. Math., 137 (2012), 1.  doi: 10.1007/s00229-011-0451-z.  Google Scholar

[32]

C. S. Lin, J. C. Wei and D. Ye, Classification and non-degeneracy of $SU(n + 1)$ Toda system with singular sources,, Invent. Math., 190 (2012), 169.  doi: 10.1007/s00222-012-0378-3.  Google Scholar

[33]

C. S. Lin, J. C. Wei and L. Zhang, Classification of blowup limits for $SU(3)$ Toda singular Toda system,, Analysis and PDE, 8 (2015), 807.  doi: 10.2140/apde.2015.8.807.  Google Scholar

[34]

C. S. Lin, J. C. Wei and L. Zhang, Local profile of fully bubbling solutions to $SU(n+1)$ Toda system,, preprint, ().   Google Scholar

[35]

C. S. Lin and L. Zhang, Profile of bubbling solutions to a Liouville system,, Annal. Inst. H. Poincar Anal. Non Lineaire, 27 (2010), 117.  doi: 10.1016/j.anihpc.2009.09.001.  Google Scholar

[36]

C. S. Lin and L. Zhang, A topological degree counting for some Liouville systems of mean field equations,, Comm. Pure Appl. Math., 64 (2011), 556.  doi: 10.1002/cpa.20355.  Google Scholar

[37]

C. S. Lin and L. Zhang, On Liouville systems at critical parameters, part 1: One bubble,, J. Funct. Anal., 264 (2013), 2584.  doi: 10.1016/j.jfa.2013.02.022.  Google Scholar

[38]

A. Malchiodi and D. Ruiz, New improved Moser-Trudinger inequalities and singular Liouville equations on compact surfaces,, Geom. Funct. Anal., 21 (2011), 1196.  doi: 10.1007/s00039-011-0134-7.  Google Scholar

[39]

A. Malchiodi and D. Ruiz, A variational analysis of the Toda system on compact surfaces,, Comm. Pure Appl. Math., 66 (2013), 332.  doi: 10.1002/cpa.21433.  Google Scholar

[40]

A. Malchiodi and C. B. Ndiaye, Some existence results for the Toda system on closed surfaces,, Atti Dell'accademia Pontificia Dei Nuovi Lincei, 18 (2007), 391.  doi: 10.4171/RLM/504.  Google Scholar

[41]

M. Nolasco and G. Tarantello, Double vortex condensates in the Chern-Simons theory,, Cal. Var. Partial Diff. Equ., 9 (1999), 31.  doi: 10.1007/s005260050132.  Google Scholar

[42]

M. Nolasco and G. Tarantello, Vortex condensates for the $SU(3)$ Chern-Simons theory,, Comm. Math. Phys., 213 (2000), 599.  doi: 10.1007/s002200000252.  Google Scholar

[43]

F. Robert and J. C. Wei, Asymptotic behavior of a fourth order mean field equation with Dirichlet boundary condition,, Indiana University Math. J., 57 (2008), 2039.  doi: 10.1512/iumj.2008.57.3324.  Google Scholar

[44]

J. C. Wei, Asymptotic behavior of a nonlinear fourth order eigenvalue problem,, Comm. Partial Diff. Equ., 21 (1996), 1451.  doi: 10.1080/03605309608821234.  Google Scholar

[45]

Y. S. Yang, The relativistic non-abelian Chern-Simons equation,, Comm. Math. Phys., 186 (1999), 199.  doi: 10.1007/BF02885678.  Google Scholar

[1]

Yong Liu. Even solutions of the Toda system with prescribed asymptotic behavior. Communications on Pure & Applied Analysis, 2011, 10 (6) : 1779-1790. doi: 10.3934/cpaa.2011.10.1779

[2]

Qiao Liu, Shangbin Cui. Regularizing rate estimates for mild solutions of the incompressible Magneto-hydrodynamic system. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1643-1660. doi: 10.3934/cpaa.2012.11.1643

[3]

Marek Fila, Michael Winkler. Sharp rate of convergence to Barenblatt profiles for a critical fast diffusion equation. Communications on Pure & Applied Analysis, 2015, 14 (1) : 107-119. doi: 10.3934/cpaa.2015.14.107

[4]

Marco Cappiello, Fabio Nicola. Sharp decay estimates and smoothness for solutions to nonlocal semilinear equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 1869-1880. doi: 10.3934/dcds.2016.36.1869

[5]

Yuxia Guo, Jianjun Nie. Classification for positive solutions of degenerate elliptic system. Discrete & Continuous Dynamical Systems - A, 2019, 39 (3) : 1457-1475. doi: 10.3934/dcds.2018130

[6]

Gerald Teschl. On the spatial asymptotics of solutions of the Toda lattice. Discrete & Continuous Dynamical Systems - A, 2010, 27 (3) : 1233-1239. doi: 10.3934/dcds.2010.27.1233

[7]

Oleg Makarenkov, Paolo Nistri. On the rate of convergence of periodic solutions in perturbed autonomous systems as the perturbation vanishes. Communications on Pure & Applied Analysis, 2008, 7 (1) : 49-61. doi: 10.3934/cpaa.2008.7.49

[8]

Zhilei Liang. Convergence rate of solutions to the contact discontinuity for the compressible Navier-Stokes equations. Communications on Pure & Applied Analysis, 2013, 12 (5) : 1907-1926. doi: 10.3934/cpaa.2013.12.1907

[9]

Manuel del Pino, Michal Kowalczyk, Juncheng Wei. The Jacobi-Toda system and foliated interfaces. Discrete & Continuous Dynamical Systems - A, 2010, 28 (3) : 975-1006. doi: 10.3934/dcds.2010.28.975

[10]

Robert Schippa. Sharp Strichartz estimates in spherical coordinates. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2047-2051. doi: 10.3934/cpaa.2017100

[11]

Linghai Zhang. Decay estimates with sharp rates of global solutions of nonlinear systems of fluid dynamics equations. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 2181-2200. doi: 10.3934/dcdss.2016091

[12]

Haitao Yang, Yibin Zhang. Boundary bubbling solutions for a planar elliptic problem with exponential Neumann data. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5467-5502. doi: 10.3934/dcds.2017238

[13]

Tohru Nakamura, Shinya Nishibata, Naoto Usami. Convergence rate of solutions towards the stationary solutions to symmetric hyperbolic-parabolic systems in half space. Kinetic & Related Models, 2018, 11 (4) : 757-793. doi: 10.3934/krm.2018031

[14]

David Cruz-Uribe, SFO, José María Martell, Carlos Pérez. Sharp weighted estimates for approximating dyadic operators. Electronic Research Announcements, 2010, 17: 12-19. doi: 10.3934/era.2010.17.12

[15]

Tong Li, Hui Yin. Convergence rate to strong boundary layer solutions for generalized BBM-Burgers equations with non-convex flux. Communications on Pure & Applied Analysis, 2014, 13 (2) : 835-858. doi: 10.3934/cpaa.2014.13.835

[16]

Isaac Alvarez-Romero, Gerald Teschl. On uniqueness properties of solutions of the Toda and Kac-van Moerbeke hierarchies. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2259-2264. doi: 10.3934/dcds.2017098

[17]

Haiyan Yin, Changjiang Zhu. Convergence rate of solutions toward stationary solutions to a viscous liquid-gas two-phase flow model in a half line. Communications on Pure & Applied Analysis, 2015, 14 (5) : 2021-2042. doi: 10.3934/cpaa.2015.14.2021

[18]

Jingbo Dou, Fangfang Ren, John Villavert. Classification of positive solutions to a Lane-Emden type integral system with negative exponents. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 6767-6780. doi: 10.3934/dcds.2016094

[19]

Haibo Cui, Zhensheng Gao, Haiyan Yin, Peixing Zhang. Stationary waves to the two-fluid non-isentropic Navier-Stokes-Poisson system in a half line: Existence, stability and convergence rate. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 4839-4870. doi: 10.3934/dcds.2016009

[20]

Sergiu Aizicovici, Hana Petzeltová. Convergence to equilibria of solutions to a conserved Phase-Field system with memory. Discrete & Continuous Dynamical Systems - S, 2009, 2 (1) : 1-16. doi: 10.3934/dcdss.2009.2.1

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (15)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]