-
Previous Article
Stability of normalized solitary waves for three coupled nonlinear Schrödinger equations
- DCDS Home
- This Issue
- Next Article
Sharp estimates for fully bubbling solutions of $B_2$ Toda system
1. | Department of Mathematics, University of British Columbia, Vancouver, B.C., V6T 1Z2, Canada |
References:
[1] |
W. W. Ao, C. S. Lin and J. C. Wei, On Non-topological Solutions of the $A_2$ and $B_2$ Chern-Simons System,, Memoirs of Amer. Math. Soc., ().
|
[2] |
W. W. Ao, C. S. Lin and J. C. Wei, On Non-topological Solutions of the $G_2$ Chern-Simons System,, Comm. Analysis and Geometry, ().
|
[3] |
D. Bartolucci, C. C. Chen, C. S. Lin and G. Tarantello, Profile of blow-up solutions to mean field equations with singular data. Comm. Partial Diff. Equ., 29 (2004), 1241-1265. |
[4] |
J. Bolton, G. R. Jensen, M. Rigoli and L. M. Woodward, On conformal minimal immersions of $S^2$ into $CP^n$, Mathematische Annalen, 279 (1988), 599-620.
doi: 10.1007/BF01458531. |
[5] |
L. Battaglia, A. Jevnikar, A. Malchiodi and D. Ruiz, A general existence result for the Toda system on compact surfaces, Advances in Mathematics, 285 (2015), 937-979, arXiv:1306.5404.
doi: 10.1016/j.aim.2015.07.036. |
[6] |
L. Battaglia and A. Malchiodi, A Moser-Trudinger inequality for the singular Toda system, Bull. Inst. Math. Acad. Sin., 9 (2014), 9-23. |
[7] |
D. Chae and O. Y. Imanuvilov, The existence of non-topological multi-vortex solutions in the relativistic self-dual Chern-Simons theory, Comm. Math. Phys., 215 (2000), 119-142.
doi: 10.1007/s002200000302. |
[8] |
C. C. Chen and C. S. Lin, Sharp estimates for solutions of multi-bubbles in compact Riemann surfaces, Comm. Pure Appl. Math., 55 (2002), 728-771.
doi: 10.1002/cpa.3014. |
[9] |
C. C. Chen and C. S. Lin, Topological degree for a mean field equation on Riemann surfaces, Comm. Pure Appl. Math., 56 (2003), 1667-1727.
doi: 10.1002/cpa.10107. |
[10] |
C. C. Chen and C. S. Lin, Mean field equations of Liouville type with singular data: Sharper estimates, Discrete Contin. Dyn. Syst., 28 (2010), 1237-1272.
doi: 10.3934/dcds.2010.28.1237. |
[11] |
C. C. Chen and C. S. Lin, Mean field equations of Liouville type with the singular data: Topological formula, Comm. Pure Appl. Math., 68 (2015), 887-947.
doi: 10.1002/cpa.21532. |
[12] |
S. S. Chern and J. G. Wolfson, Maps of the two-sphere into a complex Grassmann manifold. II, Annal. Math., 125 (1987), 301-335.
doi: 10.2307/1971312. |
[13] |
G. Dunne, Mass degeneracies in self-dual models, Phys. Lett. B,345 (1995), 452-457.
doi: 10.1016/0370-2693(94)01649-W. |
[14] |
G. Dunne, Self-dual Chern-Simons Theories, Lect. Note Phys., 36 (1995), Berlin-New York, Spring-Verlag.
doi: 10.1007/978-3-540-44777-1. |
[15] |
G. Dunne, Vacuum mass spectra for $SU(N)$ self-dual Chern-Simons-Higgs, Nucl. Phys. B, 433 (1995), 333-348.
doi: 10.1016/0550-3213(94)00476-U. |
[16] |
A. Doliwa, Holomorphic curves and Toda system, Lett. Math. Phys., 39 (1997), 21-32.
doi: 10.1007/s11005-997-1032-7. |
[17] |
P. Griffiths and J. Harris, Principles of Algebraic Geometry, Wiley-Interscience, New York, 1978. |
[18] |
M. A. Guest, Harmonic Maps, Loop Groups, and Integrable Systems, London Mathematical Society Student Texts, vol. 38. Cambridge University Press, Cambridge, 1997.
doi: 10.1017/CBO9781139174848. |
[19] |
J. Jost, C. S. Lin and G. F. Wang, Analytic aspects of the Toda system. II. Bubbling behavior and existence of solutions, Comm. Pure Appl. Math., 59 (2006), 526-558.
doi: 10.1002/cpa.20099. |
[20] |
J. Jost and G. F. Wang, Classification of solutions of a Toda system in $\mathbbR^2$, Int. Math. Res. Not., 6 (2002), 277-290.
doi: 10.1155/S1073792802105022. |
[21] |
T. J. Kuo and C. S. Lin, Sharp estimate of solutions to mean field equation with integer singular sources: the first order approximation, preprint, 2013. |
[22] |
Y. Y. Li, Harnack type inequality: The method of moving planes, Comm. Math. Phys., 200 (1999), 421-444.
doi: 10.1007/s002200050536. |
[23] |
C. S. Lin and C. L. Wang, Elliptic functions, Green functions and the mean field equations on tori, Annal. Math., 172 (2010), 911-954.
doi: 10.4007/annals.2010.172.911. |
[24] |
C. S. Lin and J. C. Wei, Sharp estimates for bubbling solutions of a fourth order mean field equation, Annali della Scuola Normale Superiore di Pisa Classe di Scienze, 6 (2007), 599-630. |
[25] |
C. S。 Lin and J. C. Wei, Locating the peaks of solutions via the maximum principle. II. A local version of the method of moving planes, Comm. Pure Appl. Math., 56 (2003), 784-809.
doi: 10.1002/cpa.10073. |
[26] |
C. S. Lin and S. Yan, Existence of bubbling solutions for Chern-Simons model on a torus, Arch. Ration. Mech. Anal., 207 (2013), 353-392.
doi: 10.1007/s00205-012-0575-7. |
[27] |
C. S. Lin and S. Yan, Bubbling solutions for the $SU(3)$ Chern-Simon model on a torus, Comm. Pure Appl. Math, 66 (2013), 991-1027.
doi: 10.1002/cpa.21454. |
[28] |
C. S. Lin and S. Yan, Bubbling solutions for relativistic Abelian Chern-Simons model on a torus, Comm. Math. Phys., 297 (2010), 733-758.
doi: 10.1007/s00220-010-1056-1. |
[29] |
C. S. Lin, L. P. Wang and J. C. Wei, Topological degree for solutions of a fourth order mean field equation, Math. Zeit., 268 (2011), 675-705.
doi: 10.1007/s00209-010-0690-9. |
[30] |
C. S. Lin, J. C. Wei and C. Zhao, Sharp estimates for fully bubbling solutions of a $SU(3)$ Toda system, Geom. Funct. Anal., 22 (2012), 1591-1635.
doi: 10.1007/s00039-012-0193-4. |
[31] |
C. S. Lin, J. C. Wei and C. Y. Zhao, Asymptotic behavior of $SU(3)$ Toda system in a bounded domain}, Manus. Math., 137 (2012), 1-18.
doi: 10.1007/s00229-011-0451-z. |
[32] |
C. S. Lin, J. C. Wei and D. Ye, Classification and non-degeneracy of $SU(n + 1)$ Toda system with singular sources, Invent. Math., 190 (2012), 169-207.
doi: 10.1007/s00222-012-0378-3. |
[33] |
C. S. Lin, J. C. Wei and L. Zhang, Classification of blowup limits for $SU(3)$ Toda singular Toda system, Analysis and PDE, 8 (2015), 807-837.
doi: 10.2140/apde.2015.8.807. |
[34] |
C. S. Lin, J. C. Wei and L. Zhang, Local profile of fully bubbling solutions to $SU(n+1)$ Toda system,, preprint, ().
|
[35] |
C. S. Lin and L. Zhang, Profile of bubbling solutions to a Liouville system, Annal. Inst. H. Poincar Anal. Non Lineaire, 27 (2010), 117-143.
doi: 10.1016/j.anihpc.2009.09.001. |
[36] |
C. S. Lin and L. Zhang, A topological degree counting for some Liouville systems of mean field equations, Comm. Pure Appl. Math., 64 (2011), 556-590.
doi: 10.1002/cpa.20355. |
[37] |
C. S. Lin and L. Zhang, On Liouville systems at critical parameters, part 1: One bubble, J. Funct. Anal., 264 (2013), 2584-2636.
doi: 10.1016/j.jfa.2013.02.022. |
[38] |
A. Malchiodi and D. Ruiz, New improved Moser-Trudinger inequalities and singular Liouville equations on compact surfaces, Geom. Funct. Anal., 21 (2011), 1196-1217.
doi: 10.1007/s00039-011-0134-7. |
[39] |
A. Malchiodi and D. Ruiz, A variational analysis of the Toda system on compact surfaces, Comm. Pure Appl. Math., 66 (2013), 332-371.
doi: 10.1002/cpa.21433. |
[40] |
A. Malchiodi and C. B. Ndiaye, Some existence results for the Toda system on closed surfaces, Atti Dell'accademia Pontificia Dei Nuovi Lincei, 18 (2007), 391-412.
doi: 10.4171/RLM/504. |
[41] |
M. Nolasco and G. Tarantello, Double vortex condensates in the Chern-Simons theory, Cal. Var. Partial Diff. Equ., 9 (1999), 31-94.
doi: 10.1007/s005260050132. |
[42] |
M. Nolasco and G. Tarantello, Vortex condensates for the $SU(3)$ Chern-Simons theory, Comm. Math. Phys., 213 (2000), 599-639.
doi: 10.1007/s002200000252. |
[43] |
F. Robert and J. C. Wei, Asymptotic behavior of a fourth order mean field equation with Dirichlet boundary condition, Indiana University Math. J., 57 (2008), 2039-2060.
doi: 10.1512/iumj.2008.57.3324. |
[44] |
J. C. Wei, Asymptotic behavior of a nonlinear fourth order eigenvalue problem, Comm. Partial Diff. Equ., 21 (1996), 1451-1467.
doi: 10.1080/03605309608821234. |
[45] |
Y. S. Yang, The relativistic non-abelian Chern-Simons equation, Comm. Math. Phys., 186 (1999), 199-218.
doi: 10.1007/BF02885678. |
show all references
References:
[1] |
W. W. Ao, C. S. Lin and J. C. Wei, On Non-topological Solutions of the $A_2$ and $B_2$ Chern-Simons System,, Memoirs of Amer. Math. Soc., ().
|
[2] |
W. W. Ao, C. S. Lin and J. C. Wei, On Non-topological Solutions of the $G_2$ Chern-Simons System,, Comm. Analysis and Geometry, ().
|
[3] |
D. Bartolucci, C. C. Chen, C. S. Lin and G. Tarantello, Profile of blow-up solutions to mean field equations with singular data. Comm. Partial Diff. Equ., 29 (2004), 1241-1265. |
[4] |
J. Bolton, G. R. Jensen, M. Rigoli and L. M. Woodward, On conformal minimal immersions of $S^2$ into $CP^n$, Mathematische Annalen, 279 (1988), 599-620.
doi: 10.1007/BF01458531. |
[5] |
L. Battaglia, A. Jevnikar, A. Malchiodi and D. Ruiz, A general existence result for the Toda system on compact surfaces, Advances in Mathematics, 285 (2015), 937-979, arXiv:1306.5404.
doi: 10.1016/j.aim.2015.07.036. |
[6] |
L. Battaglia and A. Malchiodi, A Moser-Trudinger inequality for the singular Toda system, Bull. Inst. Math. Acad. Sin., 9 (2014), 9-23. |
[7] |
D. Chae and O. Y. Imanuvilov, The existence of non-topological multi-vortex solutions in the relativistic self-dual Chern-Simons theory, Comm. Math. Phys., 215 (2000), 119-142.
doi: 10.1007/s002200000302. |
[8] |
C. C. Chen and C. S. Lin, Sharp estimates for solutions of multi-bubbles in compact Riemann surfaces, Comm. Pure Appl. Math., 55 (2002), 728-771.
doi: 10.1002/cpa.3014. |
[9] |
C. C. Chen and C. S. Lin, Topological degree for a mean field equation on Riemann surfaces, Comm. Pure Appl. Math., 56 (2003), 1667-1727.
doi: 10.1002/cpa.10107. |
[10] |
C. C. Chen and C. S. Lin, Mean field equations of Liouville type with singular data: Sharper estimates, Discrete Contin. Dyn. Syst., 28 (2010), 1237-1272.
doi: 10.3934/dcds.2010.28.1237. |
[11] |
C. C. Chen and C. S. Lin, Mean field equations of Liouville type with the singular data: Topological formula, Comm. Pure Appl. Math., 68 (2015), 887-947.
doi: 10.1002/cpa.21532. |
[12] |
S. S. Chern and J. G. Wolfson, Maps of the two-sphere into a complex Grassmann manifold. II, Annal. Math., 125 (1987), 301-335.
doi: 10.2307/1971312. |
[13] |
G. Dunne, Mass degeneracies in self-dual models, Phys. Lett. B,345 (1995), 452-457.
doi: 10.1016/0370-2693(94)01649-W. |
[14] |
G. Dunne, Self-dual Chern-Simons Theories, Lect. Note Phys., 36 (1995), Berlin-New York, Spring-Verlag.
doi: 10.1007/978-3-540-44777-1. |
[15] |
G. Dunne, Vacuum mass spectra for $SU(N)$ self-dual Chern-Simons-Higgs, Nucl. Phys. B, 433 (1995), 333-348.
doi: 10.1016/0550-3213(94)00476-U. |
[16] |
A. Doliwa, Holomorphic curves and Toda system, Lett. Math. Phys., 39 (1997), 21-32.
doi: 10.1007/s11005-997-1032-7. |
[17] |
P. Griffiths and J. Harris, Principles of Algebraic Geometry, Wiley-Interscience, New York, 1978. |
[18] |
M. A. Guest, Harmonic Maps, Loop Groups, and Integrable Systems, London Mathematical Society Student Texts, vol. 38. Cambridge University Press, Cambridge, 1997.
doi: 10.1017/CBO9781139174848. |
[19] |
J. Jost, C. S. Lin and G. F. Wang, Analytic aspects of the Toda system. II. Bubbling behavior and existence of solutions, Comm. Pure Appl. Math., 59 (2006), 526-558.
doi: 10.1002/cpa.20099. |
[20] |
J. Jost and G. F. Wang, Classification of solutions of a Toda system in $\mathbbR^2$, Int. Math. Res. Not., 6 (2002), 277-290.
doi: 10.1155/S1073792802105022. |
[21] |
T. J. Kuo and C. S. Lin, Sharp estimate of solutions to mean field equation with integer singular sources: the first order approximation, preprint, 2013. |
[22] |
Y. Y. Li, Harnack type inequality: The method of moving planes, Comm. Math. Phys., 200 (1999), 421-444.
doi: 10.1007/s002200050536. |
[23] |
C. S. Lin and C. L. Wang, Elliptic functions, Green functions and the mean field equations on tori, Annal. Math., 172 (2010), 911-954.
doi: 10.4007/annals.2010.172.911. |
[24] |
C. S. Lin and J. C. Wei, Sharp estimates for bubbling solutions of a fourth order mean field equation, Annali della Scuola Normale Superiore di Pisa Classe di Scienze, 6 (2007), 599-630. |
[25] |
C. S。 Lin and J. C. Wei, Locating the peaks of solutions via the maximum principle. II. A local version of the method of moving planes, Comm. Pure Appl. Math., 56 (2003), 784-809.
doi: 10.1002/cpa.10073. |
[26] |
C. S. Lin and S. Yan, Existence of bubbling solutions for Chern-Simons model on a torus, Arch. Ration. Mech. Anal., 207 (2013), 353-392.
doi: 10.1007/s00205-012-0575-7. |
[27] |
C. S. Lin and S. Yan, Bubbling solutions for the $SU(3)$ Chern-Simon model on a torus, Comm. Pure Appl. Math, 66 (2013), 991-1027.
doi: 10.1002/cpa.21454. |
[28] |
C. S. Lin and S. Yan, Bubbling solutions for relativistic Abelian Chern-Simons model on a torus, Comm. Math. Phys., 297 (2010), 733-758.
doi: 10.1007/s00220-010-1056-1. |
[29] |
C. S. Lin, L. P. Wang and J. C. Wei, Topological degree for solutions of a fourth order mean field equation, Math. Zeit., 268 (2011), 675-705.
doi: 10.1007/s00209-010-0690-9. |
[30] |
C. S. Lin, J. C. Wei and C. Zhao, Sharp estimates for fully bubbling solutions of a $SU(3)$ Toda system, Geom. Funct. Anal., 22 (2012), 1591-1635.
doi: 10.1007/s00039-012-0193-4. |
[31] |
C. S. Lin, J. C. Wei and C. Y. Zhao, Asymptotic behavior of $SU(3)$ Toda system in a bounded domain}, Manus. Math., 137 (2012), 1-18.
doi: 10.1007/s00229-011-0451-z. |
[32] |
C. S. Lin, J. C. Wei and D. Ye, Classification and non-degeneracy of $SU(n + 1)$ Toda system with singular sources, Invent. Math., 190 (2012), 169-207.
doi: 10.1007/s00222-012-0378-3. |
[33] |
C. S. Lin, J. C. Wei and L. Zhang, Classification of blowup limits for $SU(3)$ Toda singular Toda system, Analysis and PDE, 8 (2015), 807-837.
doi: 10.2140/apde.2015.8.807. |
[34] |
C. S. Lin, J. C. Wei and L. Zhang, Local profile of fully bubbling solutions to $SU(n+1)$ Toda system,, preprint, ().
|
[35] |
C. S. Lin and L. Zhang, Profile of bubbling solutions to a Liouville system, Annal. Inst. H. Poincar Anal. Non Lineaire, 27 (2010), 117-143.
doi: 10.1016/j.anihpc.2009.09.001. |
[36] |
C. S. Lin and L. Zhang, A topological degree counting for some Liouville systems of mean field equations, Comm. Pure Appl. Math., 64 (2011), 556-590.
doi: 10.1002/cpa.20355. |
[37] |
C. S. Lin and L. Zhang, On Liouville systems at critical parameters, part 1: One bubble, J. Funct. Anal., 264 (2013), 2584-2636.
doi: 10.1016/j.jfa.2013.02.022. |
[38] |
A. Malchiodi and D. Ruiz, New improved Moser-Trudinger inequalities and singular Liouville equations on compact surfaces, Geom. Funct. Anal., 21 (2011), 1196-1217.
doi: 10.1007/s00039-011-0134-7. |
[39] |
A. Malchiodi and D. Ruiz, A variational analysis of the Toda system on compact surfaces, Comm. Pure Appl. Math., 66 (2013), 332-371.
doi: 10.1002/cpa.21433. |
[40] |
A. Malchiodi and C. B. Ndiaye, Some existence results for the Toda system on closed surfaces, Atti Dell'accademia Pontificia Dei Nuovi Lincei, 18 (2007), 391-412.
doi: 10.4171/RLM/504. |
[41] |
M. Nolasco and G. Tarantello, Double vortex condensates in the Chern-Simons theory, Cal. Var. Partial Diff. Equ., 9 (1999), 31-94.
doi: 10.1007/s005260050132. |
[42] |
M. Nolasco and G. Tarantello, Vortex condensates for the $SU(3)$ Chern-Simons theory, Comm. Math. Phys., 213 (2000), 599-639.
doi: 10.1007/s002200000252. |
[43] |
F. Robert and J. C. Wei, Asymptotic behavior of a fourth order mean field equation with Dirichlet boundary condition, Indiana University Math. J., 57 (2008), 2039-2060.
doi: 10.1512/iumj.2008.57.3324. |
[44] |
J. C. Wei, Asymptotic behavior of a nonlinear fourth order eigenvalue problem, Comm. Partial Diff. Equ., 21 (1996), 1451-1467.
doi: 10.1080/03605309608821234. |
[45] |
Y. S. Yang, The relativistic non-abelian Chern-Simons equation, Comm. Math. Phys., 186 (1999), 199-218.
doi: 10.1007/BF02885678. |
[1] |
Qiao Liu, Shangbin Cui. Regularizing rate estimates for mild solutions of the incompressible Magneto-hydrodynamic system. Communications on Pure and Applied Analysis, 2012, 11 (5) : 1643-1660. doi: 10.3934/cpaa.2012.11.1643 |
[2] |
Yong Liu. Even solutions of the Toda system with prescribed asymptotic behavior. Communications on Pure and Applied Analysis, 2011, 10 (6) : 1779-1790. doi: 10.3934/cpaa.2011.10.1779 |
[3] |
Yong Liu, Jing Tian, Xuelin Yong. On the even solutions of the Toda system: A degree argument approach. Communications on Pure and Applied Analysis, 2022, 21 (6) : 1895-1916. doi: 10.3934/cpaa.2021075 |
[4] |
Linlin Dou. Singular solutions of Toda system in high dimensions. Discrete and Continuous Dynamical Systems, 2022, 42 (7) : 3119-3142. doi: 10.3934/dcds.2022011 |
[5] |
Marek Fila, Michael Winkler. Sharp rate of convergence to Barenblatt profiles for a critical fast diffusion equation. Communications on Pure and Applied Analysis, 2015, 14 (1) : 107-119. doi: 10.3934/cpaa.2015.14.107 |
[6] |
Marco Cappiello, Fabio Nicola. Sharp decay estimates and smoothness for solutions to nonlocal semilinear equations. Discrete and Continuous Dynamical Systems, 2016, 36 (4) : 1869-1880. doi: 10.3934/dcds.2016.36.1869 |
[7] |
Yuxia Guo, Jianjun Nie. Classification for positive solutions of degenerate elliptic system. Discrete and Continuous Dynamical Systems, 2019, 39 (3) : 1457-1475. doi: 10.3934/dcds.2018130 |
[8] |
Gerald Teschl. On the spatial asymptotics of solutions of the Toda lattice. Discrete and Continuous Dynamical Systems, 2010, 27 (3) : 1233-1239. doi: 10.3934/dcds.2010.27.1233 |
[9] |
Oleg Makarenkov, Paolo Nistri. On the rate of convergence of periodic solutions in perturbed autonomous systems as the perturbation vanishes. Communications on Pure and Applied Analysis, 2008, 7 (1) : 49-61. doi: 10.3934/cpaa.2008.7.49 |
[10] |
Zhilei Liang. Convergence rate of solutions to the contact discontinuity for the compressible Navier-Stokes equations. Communications on Pure and Applied Analysis, 2013, 12 (5) : 1907-1926. doi: 10.3934/cpaa.2013.12.1907 |
[11] |
Robert Schippa. Sharp Strichartz estimates in spherical coordinates. Communications on Pure and Applied Analysis, 2017, 16 (6) : 2047-2051. doi: 10.3934/cpaa.2017100 |
[12] |
Manuel del Pino, Michal Kowalczyk, Juncheng Wei. The Jacobi-Toda system and foliated interfaces. Discrete and Continuous Dynamical Systems, 2010, 28 (3) : 975-1006. doi: 10.3934/dcds.2010.28.975 |
[13] |
Linghai Zhang. Decay estimates with sharp rates of global solutions of nonlinear systems of fluid dynamics equations. Discrete and Continuous Dynamical Systems - S, 2016, 9 (6) : 2181-2200. doi: 10.3934/dcdss.2016091 |
[14] |
Riadh Chteoui, Abdulrahman F. Aljohani, Anouar Ben Mabrouk. Classification and simulation of chaotic behaviour of the solutions of a mixed nonlinear Schrödinger system. Electronic Research Archive, 2021, 29 (4) : 2561-2597. doi: 10.3934/era.2021002 |
[15] |
Teresa D'Aprile. Bubbling solutions for the Liouville equation around a quantized singularity in symmetric domains. Communications on Pure and Applied Analysis, 2021, 20 (1) : 159-191. doi: 10.3934/cpaa.2020262 |
[16] |
Haitao Yang, Yibin Zhang. Boundary bubbling solutions for a planar elliptic problem with exponential Neumann data. Discrete and Continuous Dynamical Systems, 2017, 37 (10) : 5467-5502. doi: 10.3934/dcds.2017238 |
[17] |
Haibo Cui, Haiyan Yin. Convergence rate of solutions toward stationary solutions to the isentropic micropolar fluid model in a half line. Discrete and Continuous Dynamical Systems - B, 2021, 26 (6) : 2899-2920. doi: 10.3934/dcdsb.2020210 |
[18] |
Tohru Nakamura, Shinya Nishibata, Naoto Usami. Convergence rate of solutions towards the stationary solutions to symmetric hyperbolic-parabolic systems in half space. Kinetic and Related Models, 2018, 11 (4) : 757-793. doi: 10.3934/krm.2018031 |
[19] |
Mingying Zhong. Diffusion limit and the optimal convergence rate of the Vlasov-Poisson-Fokker-Planck system. Kinetic and Related Models, 2022, 15 (1) : 1-26. doi: 10.3934/krm.2021041 |
[20] |
David Cruz-Uribe, SFO, José María Martell, Carlos Pérez. Sharp weighted estimates for approximating dyadic operators. Electronic Research Announcements, 2010, 17: 12-19. doi: 10.3934/era.2010.17.12 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]