April  2016, 36(4): 1789-1811. doi: 10.3934/dcds.2016.36.1789

Stability of normalized solitary waves for three coupled nonlinear Schrödinger equations

1. 

Trocaire College, Mathematics Department, 360 Choate Ave, Buffalo, NY 14220, United States

Received  July 2014 Revised  July 2015 Published  September 2015

In this paper we establish existence and stability results concerning fully nontrivial solitary-wave solutions to 3-coupled nonlinear Schrödinger system \begin{equation*} i\partial_t u_{j}+ \partial_{xx}u_{j}+ \left(\sum_{k=1}^{3} a_{kj} |u_k|^{p}\right)|u_j|^{p-2}u_j = 0, \ j=1,2,3, \end{equation*} where $u_j$ are complex-valued functions of $(x,t)\in \mathbb{R}^{2}$ and $a_{kj}$ are positive constants satisfying $a_{kj}=a_{jk}$ (symmetric attractive case). Our approach improves many of the previously known results. In all variational methods used previously to study the stability of solitary waves, which we are aware of, the constraint functionals were not independently chosen. Here we study a problem of minimizing the energy functional subject to three independent $L^2$ mass constraints and establish existence and stability results for a true three-parameter family of solitary waves.
Citation: Santosh Bhattarai. Stability of normalized solitary waves for three coupled nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 1789-1811. doi: 10.3934/dcds.2016.36.1789
References:
[1]

J. Albert and J. Angulo, Existence and stability of ground-state solutions of a Schrödinger-KdV system,, Proc. Royal Soc. of Edinburgh A, 133 (2003), 987.  doi: 10.1017/S030821050000278X.  Google Scholar

[2]

J. Albert and S. Bhattarai, Existence and stability of a two-parameter family of solitary waves for an NLS-KdV system,, Adv. Differential Eqns., 18 (2013), 1129.   Google Scholar

[3]

J. Albert, J. Bona and J.-C. Saut, Model equations for waves in stratified fluids,, Proc. Royal. Soc. of Edinburgh, 453 (1997), 1233.  doi: 10.1098/rspa.1997.0068.  Google Scholar

[4]

T. B. Benjamin, The stability of solitary waves,, Proc. Roy. Soc. London Ser. A, 328 (1972), 153.  doi: 10.1098/rspa.1972.0074.  Google Scholar

[5]

S. Bhattarai, Solitary waves and a stability analysis for an equation of short and long dispersive waves,, Nonlinear Anal., 75 (2012), 6506.  doi: 10.1016/j.na.2012.07.026.  Google Scholar

[6]

S. Bhattarai, Stability of solitary-wave solutions of coupled NLS equations with power-type nonlinearities,, Adv. Nonlinear Anal., 4 (2015), 73.  doi: 10.1515/anona-2014-0058.  Google Scholar

[7]

J. Bona, On the stability theory of solitary waves,, Proc. Roy. Soc. London Ser. A, 344 (1975), 363.  doi: 10.1098/rspa.1975.0106.  Google Scholar

[8]

J. Byeon, Effect of symmetry to the structure of positive solutions in nonlinear elliptic problems,, J. Differential Eqns., 163 (2000), 429.  doi: 10.1006/jdeq.1999.3737.  Google Scholar

[9]

T. Cazenave, Semilinear Schrödinger Equations,, 10, 10 (2003).   Google Scholar

[10]

T. Cazenave and P. L. Lions, Orbital stability of standing waves for some nonlinear Schrödinger equations,, Comm. Math. Phys., 85 (1982), 549.  doi: 10.1007/BF01403504.  Google Scholar

[11]

S. Chakravarty, M. J. Ablowitz, J. R. Sauer and R. B. Jenkins, Multisoliton interactions and wavelength-division multiplexing,, Opt. Lett., 20 (1995), 136.  doi: 10.1364/OL.20.000136.  Google Scholar

[12]

F. Dalfovo, S. Giorgini, L. P. Pitaevskii and S. Stringari, Theory of Bose-Einstein condensation in trapped gases,, Rev. Mod. Phys., 71 (1999), 463.  doi: 10.1103/RevModPhys.71.463.  Google Scholar

[13]

T.-L. Ho, Spinor Bose condensates in optical traps,, Phys. Rev. Lett., 81 (1998).  doi: 10.1103/PhysRevLett.81.742.  Google Scholar

[14]

Y. Kawaguchi and M. Ueda, Spinor Bose-Einstein condensates,, Phys. Reports, 520 (2012), 253.  doi: 10.1016/j.physrep.2012.07.005.  Google Scholar

[15]

E. H. Lieb and M. Loss, Analysis, 2nd ed., 14,, AMS-Grad. Stud. Math., (2001).  doi: 10.1090/gsm/014.  Google Scholar

[16]

P. L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case, Part 1,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 109.   Google Scholar

[17]

L. F. Mollenauer, S. G. Evangelides and J. P. Gordon, Wavelength division multiplexing with solitons in ultra-long transmission using lumped amplifiers,, J. Lightwave Technol., 9 (1991), 362.  doi: 10.1109/50.70013.  Google Scholar

[18]

N. V. Nguyen, R.-S. Tian, B. Deconinck and N. Sheils, Global existence for a system of Schrödinger equations with power-type nonlinearities,, Jour. Math. Phys., 54 (2013).  doi: 10.1063/1.4774149.  Google Scholar

[19]

N. V. Nguyen and Z-Q. Wang, Orbital stability of solitary waves for a nonlinear Schrodinger system,, Adv. Differential Eqns., 16 (2011), 977.   Google Scholar

[20]

N. V. Nguyen and Z-Q. Wang, Orbital stability of solitary waves of a 3-coupled nonlinear Schrödinger system,, Nonlinear Anal., 90 (2013), 1.  doi: 10.1016/j.na.2013.05.027.  Google Scholar

[21]

N. V. Nguyen and Z-Q. Wang, Existence and stability of a two-parameter family of solitary waves for a 2-coupled nonlinear Schrödinger system,, Discrete and Continuous Dynamical Systems - Series A (DCDS-A), 36 (2016), 1005.  doi: 10.3934/dcds.2016.36.1005.  Google Scholar

[22]

N. V. Nguyen, R. Tian and Z.-Q. Wang, Stability of traveling-wave solutions for a Schrödinger system with power-type nonlinearities,, preprint., ().   Google Scholar

[23]

M. Ohta, Stability of solitary waves for coupled nonlinear Schrödinger equations,, Nonlinear Anal., 26 (1996), 933.  doi: 10.1016/0362-546X(94)00340-8.  Google Scholar

[24]

A. C. Scott, Launching a davydov soliton: I. soliton analysis,, Phys. Scr., 29 (1984).  doi: 10.1088/0031-8949/29/3/016.  Google Scholar

[25]

B. K. Som, M. R. Gupta and B. Dasgupta, Coupled nonlinear Schrödinger equation for Langmuir and dispersive ion acoustic waves,, Phys. Lett. A, 72 (1979), 111.  doi: 10.1016/0375-9601(79)90663-7.  Google Scholar

[26]

J. Q. Sun, Z. Q. Ma and M. Z. Qin, Simulation of envelope Rossby solitons in a pair of cubic Schrödinger equations,, Appl. Math. Comput., 183 (2006), 946.  doi: 10.1016/j.amc.2006.06.041.  Google Scholar

[27]

T. Tao, Nonlinear Dispersive Equations: Local and Global Analysis, 106, AMS-CBMS, (2006).   Google Scholar

[28]

C. Yeh and L. Bergman, Enhanced pulse compression in a nonlinear fiber by a wavelength division multiplexed optical pulse,, Phys. Rev. E, 57 (1998).  doi: 10.1103/PhysRevE.57.2398.  Google Scholar

show all references

References:
[1]

J. Albert and J. Angulo, Existence and stability of ground-state solutions of a Schrödinger-KdV system,, Proc. Royal Soc. of Edinburgh A, 133 (2003), 987.  doi: 10.1017/S030821050000278X.  Google Scholar

[2]

J. Albert and S. Bhattarai, Existence and stability of a two-parameter family of solitary waves for an NLS-KdV system,, Adv. Differential Eqns., 18 (2013), 1129.   Google Scholar

[3]

J. Albert, J. Bona and J.-C. Saut, Model equations for waves in stratified fluids,, Proc. Royal. Soc. of Edinburgh, 453 (1997), 1233.  doi: 10.1098/rspa.1997.0068.  Google Scholar

[4]

T. B. Benjamin, The stability of solitary waves,, Proc. Roy. Soc. London Ser. A, 328 (1972), 153.  doi: 10.1098/rspa.1972.0074.  Google Scholar

[5]

S. Bhattarai, Solitary waves and a stability analysis for an equation of short and long dispersive waves,, Nonlinear Anal., 75 (2012), 6506.  doi: 10.1016/j.na.2012.07.026.  Google Scholar

[6]

S. Bhattarai, Stability of solitary-wave solutions of coupled NLS equations with power-type nonlinearities,, Adv. Nonlinear Anal., 4 (2015), 73.  doi: 10.1515/anona-2014-0058.  Google Scholar

[7]

J. Bona, On the stability theory of solitary waves,, Proc. Roy. Soc. London Ser. A, 344 (1975), 363.  doi: 10.1098/rspa.1975.0106.  Google Scholar

[8]

J. Byeon, Effect of symmetry to the structure of positive solutions in nonlinear elliptic problems,, J. Differential Eqns., 163 (2000), 429.  doi: 10.1006/jdeq.1999.3737.  Google Scholar

[9]

T. Cazenave, Semilinear Schrödinger Equations,, 10, 10 (2003).   Google Scholar

[10]

T. Cazenave and P. L. Lions, Orbital stability of standing waves for some nonlinear Schrödinger equations,, Comm. Math. Phys., 85 (1982), 549.  doi: 10.1007/BF01403504.  Google Scholar

[11]

S. Chakravarty, M. J. Ablowitz, J. R. Sauer and R. B. Jenkins, Multisoliton interactions and wavelength-division multiplexing,, Opt. Lett., 20 (1995), 136.  doi: 10.1364/OL.20.000136.  Google Scholar

[12]

F. Dalfovo, S. Giorgini, L. P. Pitaevskii and S. Stringari, Theory of Bose-Einstein condensation in trapped gases,, Rev. Mod. Phys., 71 (1999), 463.  doi: 10.1103/RevModPhys.71.463.  Google Scholar

[13]

T.-L. Ho, Spinor Bose condensates in optical traps,, Phys. Rev. Lett., 81 (1998).  doi: 10.1103/PhysRevLett.81.742.  Google Scholar

[14]

Y. Kawaguchi and M. Ueda, Spinor Bose-Einstein condensates,, Phys. Reports, 520 (2012), 253.  doi: 10.1016/j.physrep.2012.07.005.  Google Scholar

[15]

E. H. Lieb and M. Loss, Analysis, 2nd ed., 14,, AMS-Grad. Stud. Math., (2001).  doi: 10.1090/gsm/014.  Google Scholar

[16]

P. L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case, Part 1,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 109.   Google Scholar

[17]

L. F. Mollenauer, S. G. Evangelides and J. P. Gordon, Wavelength division multiplexing with solitons in ultra-long transmission using lumped amplifiers,, J. Lightwave Technol., 9 (1991), 362.  doi: 10.1109/50.70013.  Google Scholar

[18]

N. V. Nguyen, R.-S. Tian, B. Deconinck and N. Sheils, Global existence for a system of Schrödinger equations with power-type nonlinearities,, Jour. Math. Phys., 54 (2013).  doi: 10.1063/1.4774149.  Google Scholar

[19]

N. V. Nguyen and Z-Q. Wang, Orbital stability of solitary waves for a nonlinear Schrodinger system,, Adv. Differential Eqns., 16 (2011), 977.   Google Scholar

[20]

N. V. Nguyen and Z-Q. Wang, Orbital stability of solitary waves of a 3-coupled nonlinear Schrödinger system,, Nonlinear Anal., 90 (2013), 1.  doi: 10.1016/j.na.2013.05.027.  Google Scholar

[21]

N. V. Nguyen and Z-Q. Wang, Existence and stability of a two-parameter family of solitary waves for a 2-coupled nonlinear Schrödinger system,, Discrete and Continuous Dynamical Systems - Series A (DCDS-A), 36 (2016), 1005.  doi: 10.3934/dcds.2016.36.1005.  Google Scholar

[22]

N. V. Nguyen, R. Tian and Z.-Q. Wang, Stability of traveling-wave solutions for a Schrödinger system with power-type nonlinearities,, preprint., ().   Google Scholar

[23]

M. Ohta, Stability of solitary waves for coupled nonlinear Schrödinger equations,, Nonlinear Anal., 26 (1996), 933.  doi: 10.1016/0362-546X(94)00340-8.  Google Scholar

[24]

A. C. Scott, Launching a davydov soliton: I. soliton analysis,, Phys. Scr., 29 (1984).  doi: 10.1088/0031-8949/29/3/016.  Google Scholar

[25]

B. K. Som, M. R. Gupta and B. Dasgupta, Coupled nonlinear Schrödinger equation for Langmuir and dispersive ion acoustic waves,, Phys. Lett. A, 72 (1979), 111.  doi: 10.1016/0375-9601(79)90663-7.  Google Scholar

[26]

J. Q. Sun, Z. Q. Ma and M. Z. Qin, Simulation of envelope Rossby solitons in a pair of cubic Schrödinger equations,, Appl. Math. Comput., 183 (2006), 946.  doi: 10.1016/j.amc.2006.06.041.  Google Scholar

[27]

T. Tao, Nonlinear Dispersive Equations: Local and Global Analysis, 106, AMS-CBMS, (2006).   Google Scholar

[28]

C. Yeh and L. Bergman, Enhanced pulse compression in a nonlinear fiber by a wavelength division multiplexed optical pulse,, Phys. Rev. E, 57 (1998).  doi: 10.1103/PhysRevE.57.2398.  Google Scholar

[1]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[2]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[3]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[4]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020276

[5]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[6]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

[7]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[8]

Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020379

[9]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[10]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[11]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[12]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[13]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020264

[14]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[15]

Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297

[16]

Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246

[17]

Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121

[18]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[19]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466

[20]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (61)
  • HTML views (0)
  • Cited by (8)

Other articles
by authors

[Back to Top]