April  2016, 36(4): 1847-1868. doi: 10.3934/dcds.2016.36.1847

Time periodic solutions to the three--dimensional equations of compressible magnetohydrodynamic flows

1. 

School of Mathematical Sciences and Fujian Provincial Key Laboratory, on Mathematical Modeling and Scientific Computing, Xiamen University, Fujian, Xiamen, 361005, China, China

Received  March 2015 Revised  May 2015 Published  September 2015

In this paper, the compressible magnetohydrodynamic system with some smallness and symmetry assumptions on the time periodic external force is considered in $\mathbb{R}^3$. Based on the uniform estimates and the topological degree theory, we prove the existence of a time periodic solution in a bounded domain. Then by a limiting process, the result in the whole space $\mathbb{R}^3$ is obtained.
Citation: Hong Cai, Zhong Tan. Time periodic solutions to the three--dimensional equations of compressible magnetohydrodynamic flows. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 1847-1868. doi: 10.3934/dcds.2016.36.1847
References:
[1]

J. Březina and K. Kagei, Decay properties of solutions to the linearized compressible Navier-Stokes equation around time-periodic parallel flow,, Math. Models Methods Appl. Sci., 22 (2012).  doi: 10.1142/S0218202512500078.  Google Scholar

[2]

J. Březina and K. Kagei, Spectral properties of the linearized compressible Navier-Stokes equation around time-periodic parallel flow,, J. Differential Equations, 255 (2013), 1132.  doi: 10.1016/j.jde.2013.04.036.  Google Scholar

[3]

Q. Chen and Z. Tan, Global existence and convergence rates of smooth solutions for the compressible magnetohydrodynamics equations,, Nonlinear Anal., 72 (2010), 4438.  doi: 10.1016/j.na.2010.02.019.  Google Scholar

[4]

G. Q. Chen and D. Wang, Global solutions of nonlinear magnetohydrodynamics with large initial data,, J. Differential Equations, 182 (2002), 344.  doi: 10.1006/jdeq.2001.4111.  Google Scholar

[5]

G. Q. Chen and D. Wang, Existence and continuous dependence of large solutions for the magnetohydrodynamics equations,, Z. Angew. Math. Phys., 54 (2003), 608.  doi: 10.1007/s00033-003-1017-z.  Google Scholar

[6]

J. Fan, F. Li, G. Nakamura and Z. Tan, Regularity criteria for the three-dimensional magnetohydrodynamic equations,, J. Differential Equations, 256 (2014), 2858.  doi: 10.1016/j.jde.2014.01.021.  Google Scholar

[7]

J. Fan and W. Yu, Global variational solutions to the compressible magnetohydrodynamic equations,, Nonlinear Anal., 69 (2008), 3637.  doi: 10.1016/j.na.2007.10.005.  Google Scholar

[8]

J. Fan and W. Yu, Strong solution to the compressible magnetohydrodynamic equations with vacuum,, Nonlinear Anal. Real World Appl., 10 (2009), 392.   Google Scholar

[9]

J. Fan and K. Zhao, Global Cauchy problem of $2D$ generalized magnetohydrodynamic equations,, J. Math. Anal. Appl., 420 (2014), 1024.  doi: 10.1016/j.jmaa.2014.06.030.  Google Scholar

[10]

E. Feireisl, P. B. Mucha, A. Novotny and M. Pokorny, Time-periodic solutions to the full Navier-Stokes-Fourier system,, Arch. Rational Mech. Anal., 204 (2012), 745.  doi: 10.1007/s00205-012-0492-9.  Google Scholar

[11]

D. Hoff and E. Tsyganov, Uniqueness and continuous dependence of weak solutions in compressible magnetohydrodynamics,, Z. Angew. Math. Phys., 56 (2005), 791.  doi: 10.1007/s00033-005-4057-8.  Google Scholar

[12]

X. Hu and D. Wang, Global existence and large-time behavior of solutions to the three-dimensional equations of compressible magnetohydrodynamics flows,, Arch. Ration. Mech. Anal., 197 (2010), 203.  doi: 10.1007/s00205-010-0295-9.  Google Scholar

[13]

C. H. Jin and T. Yang, Periodic solutions for a $3-D$ compressible Navier-Stokes equations in a periodic domain,, submitted to JDE., ().   Google Scholar

[14]

C. H. Jin and T. Yang, Time periodic solutions to $3-D$ compressible Navier-Stokes system with external force,, submitted., ().   Google Scholar

[15]

Y. Kagei and K. Tsuda, Existence and stability of time periodic solution to the compressible Navier-Stokes equation for time periodic external force with symmetry,, J. Differential Equations, 258 (2015), 399.  doi: 10.1016/j.jde.2014.09.016.  Google Scholar

[16]

S. Kawashima and M. Okada, Smooth global solutions for the one-dimensinal equations in magnetohydrodynamics,, Proc. Japan Acad. Ser. A Math. Sci., 58 (1982), 384.  doi: 10.3792/pjaa.58.384.  Google Scholar

[17]

S. Kawashima, Smooth global solutions for two-dimensinal equations of electromagnetofluid dynamics,, apan J. Appl. Math., 1 (1984), 207.  doi: 10.1007/BF03167869.  Google Scholar

[18]

H. L. Li, X. Y. Xu and J. W. Zhang, Global Classical Solutions to $3D$ Compressible Magnetohydrodynamic Equations with Large Oscillations and Vacuum,, SIAM J. Math. Anal., 45 (2013), 1356.  doi: 10.1137/120893355.  Google Scholar

[19]

H. F. Ma, S. Ukai and T. Yang, Time periodic solutions of compressible Navier-Stokes equations,, J. Differential Equations, 248 (2010), 2275.  doi: 10.1016/j.jde.2009.11.031.  Google Scholar

[20]

A. Matsumura and T. Nishida, Periodic solutions of a viscous gas equation,, Recent topics in nonlinear PDE, 160 (1982), 49.  doi: 10.1016/S0304-0208(08)70506-1.  Google Scholar

[21]

E. A. Notte, M. D. Rojas and M. A. Rojas, Periodic strong solutions of the magnetohydrodynamic type equations,, Proyecciones, 21 (2002), 199.  doi: 10.4067/S0716-09172002000300001.  Google Scholar

[22]

Z. Tan and H. Q. Wang, Time periodic solutions of compressible magnetohydrodynamic equations,, Nonlinear Anal., 76 (2013), 153.  doi: 10.1016/j.na.2012.08.012.  Google Scholar

[23]

A. Valli, Periodic and stationary solutions for compressible Navier-Stokes equations via a stability method,, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 10 (1983), 607.   Google Scholar

[24]

D. H. Wang, Large solutions to the initial-boundary value problem for planar magnetohydrodynamics,, SIAM J. Appl. Math., 63 (2003), 1424.  doi: 10.1137/S0036139902409284.  Google Scholar

[25]

W. Yan and Y. Li, Existence of periodic flows for compressible Magnetohydrodynamics in $\mathbbT^3$,, Submitted., ().   Google Scholar

[26]

Y. F. Yang, X. H. Gu and C. S. Dou, Global well-posedness of strong solutions to the magnetohydrodynamic equations of compressible flows,, Nonlinear Anal., 95 (2014), 23.  doi: 10.1016/j.na.2013.08.024.  Google Scholar

show all references

References:
[1]

J. Březina and K. Kagei, Decay properties of solutions to the linearized compressible Navier-Stokes equation around time-periodic parallel flow,, Math. Models Methods Appl. Sci., 22 (2012).  doi: 10.1142/S0218202512500078.  Google Scholar

[2]

J. Březina and K. Kagei, Spectral properties of the linearized compressible Navier-Stokes equation around time-periodic parallel flow,, J. Differential Equations, 255 (2013), 1132.  doi: 10.1016/j.jde.2013.04.036.  Google Scholar

[3]

Q. Chen and Z. Tan, Global existence and convergence rates of smooth solutions for the compressible magnetohydrodynamics equations,, Nonlinear Anal., 72 (2010), 4438.  doi: 10.1016/j.na.2010.02.019.  Google Scholar

[4]

G. Q. Chen and D. Wang, Global solutions of nonlinear magnetohydrodynamics with large initial data,, J. Differential Equations, 182 (2002), 344.  doi: 10.1006/jdeq.2001.4111.  Google Scholar

[5]

G. Q. Chen and D. Wang, Existence and continuous dependence of large solutions for the magnetohydrodynamics equations,, Z. Angew. Math. Phys., 54 (2003), 608.  doi: 10.1007/s00033-003-1017-z.  Google Scholar

[6]

J. Fan, F. Li, G. Nakamura and Z. Tan, Regularity criteria for the three-dimensional magnetohydrodynamic equations,, J. Differential Equations, 256 (2014), 2858.  doi: 10.1016/j.jde.2014.01.021.  Google Scholar

[7]

J. Fan and W. Yu, Global variational solutions to the compressible magnetohydrodynamic equations,, Nonlinear Anal., 69 (2008), 3637.  doi: 10.1016/j.na.2007.10.005.  Google Scholar

[8]

J. Fan and W. Yu, Strong solution to the compressible magnetohydrodynamic equations with vacuum,, Nonlinear Anal. Real World Appl., 10 (2009), 392.   Google Scholar

[9]

J. Fan and K. Zhao, Global Cauchy problem of $2D$ generalized magnetohydrodynamic equations,, J. Math. Anal. Appl., 420 (2014), 1024.  doi: 10.1016/j.jmaa.2014.06.030.  Google Scholar

[10]

E. Feireisl, P. B. Mucha, A. Novotny and M. Pokorny, Time-periodic solutions to the full Navier-Stokes-Fourier system,, Arch. Rational Mech. Anal., 204 (2012), 745.  doi: 10.1007/s00205-012-0492-9.  Google Scholar

[11]

D. Hoff and E. Tsyganov, Uniqueness and continuous dependence of weak solutions in compressible magnetohydrodynamics,, Z. Angew. Math. Phys., 56 (2005), 791.  doi: 10.1007/s00033-005-4057-8.  Google Scholar

[12]

X. Hu and D. Wang, Global existence and large-time behavior of solutions to the three-dimensional equations of compressible magnetohydrodynamics flows,, Arch. Ration. Mech. Anal., 197 (2010), 203.  doi: 10.1007/s00205-010-0295-9.  Google Scholar

[13]

C. H. Jin and T. Yang, Periodic solutions for a $3-D$ compressible Navier-Stokes equations in a periodic domain,, submitted to JDE., ().   Google Scholar

[14]

C. H. Jin and T. Yang, Time periodic solutions to $3-D$ compressible Navier-Stokes system with external force,, submitted., ().   Google Scholar

[15]

Y. Kagei and K. Tsuda, Existence and stability of time periodic solution to the compressible Navier-Stokes equation for time periodic external force with symmetry,, J. Differential Equations, 258 (2015), 399.  doi: 10.1016/j.jde.2014.09.016.  Google Scholar

[16]

S. Kawashima and M. Okada, Smooth global solutions for the one-dimensinal equations in magnetohydrodynamics,, Proc. Japan Acad. Ser. A Math. Sci., 58 (1982), 384.  doi: 10.3792/pjaa.58.384.  Google Scholar

[17]

S. Kawashima, Smooth global solutions for two-dimensinal equations of electromagnetofluid dynamics,, apan J. Appl. Math., 1 (1984), 207.  doi: 10.1007/BF03167869.  Google Scholar

[18]

H. L. Li, X. Y. Xu and J. W. Zhang, Global Classical Solutions to $3D$ Compressible Magnetohydrodynamic Equations with Large Oscillations and Vacuum,, SIAM J. Math. Anal., 45 (2013), 1356.  doi: 10.1137/120893355.  Google Scholar

[19]

H. F. Ma, S. Ukai and T. Yang, Time periodic solutions of compressible Navier-Stokes equations,, J. Differential Equations, 248 (2010), 2275.  doi: 10.1016/j.jde.2009.11.031.  Google Scholar

[20]

A. Matsumura and T. Nishida, Periodic solutions of a viscous gas equation,, Recent topics in nonlinear PDE, 160 (1982), 49.  doi: 10.1016/S0304-0208(08)70506-1.  Google Scholar

[21]

E. A. Notte, M. D. Rojas and M. A. Rojas, Periodic strong solutions of the magnetohydrodynamic type equations,, Proyecciones, 21 (2002), 199.  doi: 10.4067/S0716-09172002000300001.  Google Scholar

[22]

Z. Tan and H. Q. Wang, Time periodic solutions of compressible magnetohydrodynamic equations,, Nonlinear Anal., 76 (2013), 153.  doi: 10.1016/j.na.2012.08.012.  Google Scholar

[23]

A. Valli, Periodic and stationary solutions for compressible Navier-Stokes equations via a stability method,, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 10 (1983), 607.   Google Scholar

[24]

D. H. Wang, Large solutions to the initial-boundary value problem for planar magnetohydrodynamics,, SIAM J. Appl. Math., 63 (2003), 1424.  doi: 10.1137/S0036139902409284.  Google Scholar

[25]

W. Yan and Y. Li, Existence of periodic flows for compressible Magnetohydrodynamics in $\mathbbT^3$,, Submitted., ().   Google Scholar

[26]

Y. F. Yang, X. H. Gu and C. S. Dou, Global well-posedness of strong solutions to the magnetohydrodynamic equations of compressible flows,, Nonlinear Anal., 95 (2014), 23.  doi: 10.1016/j.na.2013.08.024.  Google Scholar

[1]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[2]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[3]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[4]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[5]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[6]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[7]

Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020051

[8]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[9]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[10]

Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020336

[11]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[12]

Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 1-28. doi: 10.3934/dcds.2020345

[13]

Tian Ma, Shouhong Wang. Topological phase transition III: Solar surface eruptions and sunspots. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020350

[14]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[15]

Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240

[16]

Harrison Bray. Ergodicity of Bowen–Margulis measure for the Benoist 3-manifolds. Journal of Modern Dynamics, 2020, 16: 305-329. doi: 10.3934/jmd.2020011

[17]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[18]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[19]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[20]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020276

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (64)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]