    April  2016, 36(4): 1881-1903. doi: 10.3934/dcds.2016.36.1881

## Boundary blow-up solutions to fractional elliptic equations in a measure framework

 1 Department of Mathematics, Jiangxi Normal University, Nanchang, Jiangxi 330022, China, China 2 Department of Mathematics, King Saud University, P.O. Box 2455, 11451 Riyadh

Received  January 2015 Revised  July 2015 Published  September 2015

Let $\alpha\in(0,1)$, $\Omega$ be a bounded open domain in $\mathbb{R}^N$ ($N\ge 2$) with $C^2$ boundary $\partial\Omega$ and $\omega$ be the Hausdorff measure on $\partial\Omega$. We denote by $\frac{\partial^\alpha \omega}{\partial \vec{n}^\alpha}$ a measure $\langle\frac{\partial^\alpha \omega}{\partial \vec{n}^\alpha},f\rangle=\int_{\partial\Omega}\frac{\partial^\alpha f(x)}{\partial \vec{n}_x^\alpha} d\omega(x),\quad f\in C^1(\bar\Omega),$ where $\vec{n}_x$ is the unit outward normal vector at point $x\in\partial\Omega$. In this paper, we prove that problem \begin{equation}\label{0.1} \begin{array}{lll} (-\Delta)^\alpha u+g(u)=k\frac{\partial^\alpha \omega}{\partial \vec{n}^\alpha}\quad & {\rm in}\quad \bar\Omega,                                                           (1)\\ \phantom{ (-\Delta)^\alpha +g(u)} u=0\quad & {\rm in}\quad \bar\Omega^c \end{array} \end{equation} admits a unique weak solution $u_k$ under the hypotheses that $k>0$, $(-\Delta)^\alpha$ denotes the fractional Laplacian with $\alpha\in(0,1)$ and $g$ is a nondecreasing function satisfying extra conditions. We prove that the weak solution of (1) is a classical solution of $\begin{array}{lll} \ \ \ (-\Delta)^\alpha u+g(u)=0\quad & {\rm in}\quad \Omega,\\ \phantom{------\ } \ \ \ u=0\quad & {\rm in}\quad \mathbb{R}^N\setminus\bar\Omega,\\ \phantom{} \lim_{x\in\Omega,x\to\partial\Omega}u(x)=+\infty. \end{array}$
Citation: Huyuan Chen, Hichem Hajaiej, Ying Wang. Boundary blow-up solutions to fractional elliptic equations in a measure framework. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 1881-1903. doi: 10.3934/dcds.2016.36.1881
##### References:
  C. Bandle and M. Marcus, Asymptotic behaviour of solutions and derivatives for semilinear elliptic problems with blow-up on the boundary,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 12 (1995), 155. Google Scholar  Ph. Bénilan, H. Brezis and M. Crandall, A semilinear elliptic equation in $L^1(\mathbbR^N )$,, Ann. Sc. Norm. Sup. Pisa Cl. Sci., 2 (1975), 523. Google Scholar  L. Caffarelli and L. Silvestre, Regularity theory for fully nonlinear integro-differential equaitons,, Comm. Pure Appl. Math., 62 (2009), 597.  doi: 10.1002/cpa.20274.  Google Scholar  Z. Chen and R. Song, Estimates on Green functions and poisson kernels for symmetric stable process,, Math. Ann., 312 (1998), 465.  doi: 10.1007/s002080050232.  Google Scholar  H. Chen, P. Felmer and A. Quaas, Large solution to elliptic equations involving fractional Laplacian,, accepted by Ann. Inst. H. Poincaré, ().  doi: 10.1016/j.anihpc.2014.08.001. Google Scholar  H. Chen and H. Hajaiej, Existence, Non-existence, Uniqueness of solutions for semilinear elliptic equations involving measures concentrated on boundary,, arXiv:1410.2672 (2014)., (2014).   Google Scholar  R. Cignoli and M. Cottlar, An Introduction to Functional Analysis,, North-Holland, (1974).   Google Scholar  H. Chen and L. Véron, Semilinear fractional elliptic equations involving measures,, J. Differential equations, 257 (2014), 1457.  doi: 10.1016/j.jde.2014.05.012.  Google Scholar  Y. Du and Z. Guo, Uniqueness and layer analysis for boundary blow-up solutions,, J. Math. Pures Appl., 83 (2004), 739.  doi: 10.1016/j.matpur.2004.01.006.  Google Scholar  M. del Pino and R. Letelier, The influence of domain geometry in boundary blow-up elliptic problems,, Nonlinear Analysis: Theory, 48 (2002), 897.  doi: 10.1016/S0362-546X(00)00222-4.  Google Scholar  Y. Du, Z. Guo and F. Zhou, Boundary blow-up solutions with interior layers and spikes in a bistable problem,, Discrete Contin. Dyn. Syst., 19 (2007), 271.  doi: 10.3934/dcds.2007.19.271.  Google Scholar  P. Felmer and A. Quaas, Fundamental solutions and Liouville type theorems for nonlinear integral operators,, Advances in Mathematics, 226 (2011), 2712.  doi: 10.1016/j.aim.2010.09.023.  Google Scholar  J. B. Keller, On solutions of $\Delta u = f(u)$,, Comm. Pure Appl. Math., 10 (1957), 503.  doi: 10.1002/cpa.3160100402.  Google Scholar  J. Garcia-Melián, R. Letelier and J. de Lis, Uniqueness and asymptotic behaviour for solutions of semilinear problems with boundary blow-up,, Proc. Amer. Math. Soc., 129 (2001), 3593.  doi: 10.1090/S0002-9939-01-06229-3.  Google Scholar  Z. Guo and F. Zhou, Exact multiplicity for boundary blow-up solutions,, J. Differential Equations, 228 (2006), 486.  doi: 10.1016/j.jde.2006.02.012.  Google Scholar  R. Osserman, On the inequality $\Delta u = f(u)$,, Pac. J. Math., 7 (1957), 1641. Google Scholar  T. Ouyang and J. Shi, Exact multiplicity of positive solutions for a class of semilinear problems,, J. Differential Equations, 146 (1998), 121.  doi: 10.1006/jdeq.1998.3414.  Google Scholar  M. Pertti, Geometry of Sets and Measures in Euclidean Spaces: Fractals and Rectifiability,, Cambridge University Press, (1995).  doi: 10.1017/CBO9780511623813.  Google Scholar  M. Marcus and L. Véron, Uniqueness and asymptotic behavior of solutions with boundary blow-up for a class of nonlinear elliptic equations,, Ann. Inst. H. Poincaré, 14 (1997), 237.  doi: 10.1016/S0294-1449(97)80146-1.  Google Scholar  M. Marcus and L. Véron, Existence and uniqueness results for large solutions of general nonlinear elliptic equation,, J. Evol. Equ., 3 (2003), 637.  doi: 10.1007/s00028-003-0122-y.  Google Scholar

show all references

##### References:
  C. Bandle and M. Marcus, Asymptotic behaviour of solutions and derivatives for semilinear elliptic problems with blow-up on the boundary,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 12 (1995), 155. Google Scholar  Ph. Bénilan, H. Brezis and M. Crandall, A semilinear elliptic equation in $L^1(\mathbbR^N )$,, Ann. Sc. Norm. Sup. Pisa Cl. Sci., 2 (1975), 523. Google Scholar  L. Caffarelli and L. Silvestre, Regularity theory for fully nonlinear integro-differential equaitons,, Comm. Pure Appl. Math., 62 (2009), 597.  doi: 10.1002/cpa.20274.  Google Scholar  Z. Chen and R. Song, Estimates on Green functions and poisson kernels for symmetric stable process,, Math. Ann., 312 (1998), 465.  doi: 10.1007/s002080050232.  Google Scholar  H. Chen, P. Felmer and A. Quaas, Large solution to elliptic equations involving fractional Laplacian,, accepted by Ann. Inst. H. Poincaré, ().  doi: 10.1016/j.anihpc.2014.08.001. Google Scholar  H. Chen and H. Hajaiej, Existence, Non-existence, Uniqueness of solutions for semilinear elliptic equations involving measures concentrated on boundary,, arXiv:1410.2672 (2014)., (2014).   Google Scholar  R. Cignoli and M. Cottlar, An Introduction to Functional Analysis,, North-Holland, (1974).   Google Scholar  H. Chen and L. Véron, Semilinear fractional elliptic equations involving measures,, J. Differential equations, 257 (2014), 1457.  doi: 10.1016/j.jde.2014.05.012.  Google Scholar  Y. Du and Z. Guo, Uniqueness and layer analysis for boundary blow-up solutions,, J. Math. Pures Appl., 83 (2004), 739.  doi: 10.1016/j.matpur.2004.01.006.  Google Scholar  M. del Pino and R. Letelier, The influence of domain geometry in boundary blow-up elliptic problems,, Nonlinear Analysis: Theory, 48 (2002), 897.  doi: 10.1016/S0362-546X(00)00222-4.  Google Scholar  Y. Du, Z. Guo and F. Zhou, Boundary blow-up solutions with interior layers and spikes in a bistable problem,, Discrete Contin. Dyn. Syst., 19 (2007), 271.  doi: 10.3934/dcds.2007.19.271.  Google Scholar  P. Felmer and A. Quaas, Fundamental solutions and Liouville type theorems for nonlinear integral operators,, Advances in Mathematics, 226 (2011), 2712.  doi: 10.1016/j.aim.2010.09.023.  Google Scholar  J. B. Keller, On solutions of $\Delta u = f(u)$,, Comm. Pure Appl. Math., 10 (1957), 503.  doi: 10.1002/cpa.3160100402.  Google Scholar  J. Garcia-Melián, R. Letelier and J. de Lis, Uniqueness and asymptotic behaviour for solutions of semilinear problems with boundary blow-up,, Proc. Amer. Math. Soc., 129 (2001), 3593.  doi: 10.1090/S0002-9939-01-06229-3.  Google Scholar  Z. Guo and F. Zhou, Exact multiplicity for boundary blow-up solutions,, J. Differential Equations, 228 (2006), 486.  doi: 10.1016/j.jde.2006.02.012.  Google Scholar  R. Osserman, On the inequality $\Delta u = f(u)$,, Pac. J. Math., 7 (1957), 1641. Google Scholar  T. Ouyang and J. Shi, Exact multiplicity of positive solutions for a class of semilinear problems,, J. Differential Equations, 146 (1998), 121.  doi: 10.1006/jdeq.1998.3414.  Google Scholar  M. Pertti, Geometry of Sets and Measures in Euclidean Spaces: Fractals and Rectifiability,, Cambridge University Press, (1995).  doi: 10.1017/CBO9780511623813.  Google Scholar  M. Marcus and L. Véron, Uniqueness and asymptotic behavior of solutions with boundary blow-up for a class of nonlinear elliptic equations,, Ann. Inst. H. Poincaré, 14 (1997), 237.  doi: 10.1016/S0294-1449(97)80146-1.  Google Scholar  M. Marcus and L. Véron, Existence and uniqueness results for large solutions of general nonlinear elliptic equation,, J. Evol. Equ., 3 (2003), 637.  doi: 10.1007/s00028-003-0122-y.  Google Scholar
  Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020264  Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216  Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443  Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $p$ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442  Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $p$-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445  Yichen Zhang, Meiqiang Feng. A coupled $p$-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075  Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348  Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $q$-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440  Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118  Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453  Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248  Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020267  Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340  Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020052  Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321  Yahia Zare Mehrjerdi. A new methodology for solving bi-criterion fractional stochastic programming. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020054  Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137  Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432  Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319  Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020379

2019 Impact Factor: 1.338