April  2016, 36(4): 1881-1903. doi: 10.3934/dcds.2016.36.1881

Boundary blow-up solutions to fractional elliptic equations in a measure framework

1. 

Department of Mathematics, Jiangxi Normal University, Nanchang, Jiangxi 330022, China, China

2. 

Department of Mathematics, King Saud University, P.O. Box 2455, 11451 Riyadh

Received  January 2015 Revised  July 2015 Published  September 2015

Let $\alpha\in(0,1)$, $\Omega$ be a bounded open domain in $\mathbb{R}^N$ ($N\ge 2$) with $C^2$ boundary $\partial\Omega$ and $\omega$ be the Hausdorff measure on $\partial\Omega$. We denote by $\frac{\partial^\alpha \omega}{\partial \vec{n}^\alpha}$ a measure $$\langle\frac{\partial^\alpha \omega}{\partial \vec{n}^\alpha},f\rangle=\int_{\partial\Omega}\frac{\partial^\alpha f(x)}{\partial \vec{n}_x^\alpha} d\omega(x),\quad f\in C^1(\bar\Omega),$$ where $\vec{n}_x$ is the unit outward normal vector at point $x\in\partial\Omega$. In this paper, we prove that problem \begin{equation}\label{0.1} \begin{array}{lll} (-\Delta)^\alpha u+g(u)=k\frac{\partial^\alpha \omega}{\partial \vec{n}^\alpha}\quad & {\rm in}\quad \bar\Omega,                                                           (1)\\ \phantom{ (-\Delta)^\alpha +g(u)} u=0\quad & {\rm in}\quad \bar\Omega^c \end{array} \end{equation} admits a unique weak solution $u_k$ under the hypotheses that $k>0$, $(-\Delta)^\alpha$ denotes the fractional Laplacian with $\alpha\in(0,1)$ and $g$ is a nondecreasing function satisfying extra conditions. We prove that the weak solution of (1) is a classical solution of $$ \begin{array}{lll} \ \ \ (-\Delta)^\alpha u+g(u)=0\quad & {\rm in}\quad \Omega,\\ \phantom{------\ } \ \ \ u=0\quad & {\rm in}\quad \mathbb{R}^N\setminus\bar\Omega,\\ \phantom{} \lim_{x\in\Omega,x\to\partial\Omega}u(x)=+\infty. \end{array} $$
Citation: Huyuan Chen, Hichem Hajaiej, Ying Wang. Boundary blow-up solutions to fractional elliptic equations in a measure framework. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 1881-1903. doi: 10.3934/dcds.2016.36.1881
References:
[1]

C. Bandle and M. Marcus, Asymptotic behaviour of solutions and derivatives for semilinear elliptic problems with blow-up on the boundary,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 12 (1995), 155.   Google Scholar

[2]

Ph. Bénilan, H. Brezis and M. Crandall, A semilinear elliptic equation in $L^1(\mathbbR^N )$,, Ann. Sc. Norm. Sup. Pisa Cl. Sci., 2 (1975), 523.   Google Scholar

[3]

L. Caffarelli and L. Silvestre, Regularity theory for fully nonlinear integro-differential equaitons,, Comm. Pure Appl. Math., 62 (2009), 597.  doi: 10.1002/cpa.20274.  Google Scholar

[4]

Z. Chen and R. Song, Estimates on Green functions and poisson kernels for symmetric stable process,, Math. Ann., 312 (1998), 465.  doi: 10.1007/s002080050232.  Google Scholar

[5]

H. Chen, P. Felmer and A. Quaas, Large solution to elliptic equations involving fractional Laplacian,, accepted by Ann. Inst. H. Poincaré, ().  doi: 10.1016/j.anihpc.2014.08.001.  Google Scholar

[6]

H. Chen and H. Hajaiej, Existence, Non-existence, Uniqueness of solutions for semilinear elliptic equations involving measures concentrated on boundary,, arXiv:1410.2672 (2014)., (2014).   Google Scholar

[7]

R. Cignoli and M. Cottlar, An Introduction to Functional Analysis,, North-Holland, (1974).   Google Scholar

[8]

H. Chen and L. Véron, Semilinear fractional elliptic equations involving measures,, J. Differential equations, 257 (2014), 1457.  doi: 10.1016/j.jde.2014.05.012.  Google Scholar

[9]

Y. Du and Z. Guo, Uniqueness and layer analysis for boundary blow-up solutions,, J. Math. Pures Appl., 83 (2004), 739.  doi: 10.1016/j.matpur.2004.01.006.  Google Scholar

[10]

M. del Pino and R. Letelier, The influence of domain geometry in boundary blow-up elliptic problems,, Nonlinear Analysis: Theory, 48 (2002), 897.  doi: 10.1016/S0362-546X(00)00222-4.  Google Scholar

[11]

Y. Du, Z. Guo and F. Zhou, Boundary blow-up solutions with interior layers and spikes in a bistable problem,, Discrete Contin. Dyn. Syst., 19 (2007), 271.  doi: 10.3934/dcds.2007.19.271.  Google Scholar

[12]

P. Felmer and A. Quaas, Fundamental solutions and Liouville type theorems for nonlinear integral operators,, Advances in Mathematics, 226 (2011), 2712.  doi: 10.1016/j.aim.2010.09.023.  Google Scholar

[13]

J. B. Keller, On solutions of $\Delta u = f(u)$,, Comm. Pure Appl. Math., 10 (1957), 503.  doi: 10.1002/cpa.3160100402.  Google Scholar

[14]

J. Garcia-Melián, R. Letelier and J. de Lis, Uniqueness and asymptotic behaviour for solutions of semilinear problems with boundary blow-up,, Proc. Amer. Math. Soc., 129 (2001), 3593.  doi: 10.1090/S0002-9939-01-06229-3.  Google Scholar

[15]

Z. Guo and F. Zhou, Exact multiplicity for boundary blow-up solutions,, J. Differential Equations, 228 (2006), 486.  doi: 10.1016/j.jde.2006.02.012.  Google Scholar

[16]

R. Osserman, On the inequality $\Delta u = f(u)$,, Pac. J. Math., 7 (1957), 1641.   Google Scholar

[17]

T. Ouyang and J. Shi, Exact multiplicity of positive solutions for a class of semilinear problems,, J. Differential Equations, 146 (1998), 121.  doi: 10.1006/jdeq.1998.3414.  Google Scholar

[18]

M. Pertti, Geometry of Sets and Measures in Euclidean Spaces: Fractals and Rectifiability,, Cambridge University Press, (1995).  doi: 10.1017/CBO9780511623813.  Google Scholar

[19]

M. Marcus and L. Véron, Uniqueness and asymptotic behavior of solutions with boundary blow-up for a class of nonlinear elliptic equations,, Ann. Inst. H. Poincaré, 14 (1997), 237.  doi: 10.1016/S0294-1449(97)80146-1.  Google Scholar

[20]

M. Marcus and L. Véron, Existence and uniqueness results for large solutions of general nonlinear elliptic equation,, J. Evol. Equ., 3 (2003), 637.  doi: 10.1007/s00028-003-0122-y.  Google Scholar

show all references

References:
[1]

C. Bandle and M. Marcus, Asymptotic behaviour of solutions and derivatives for semilinear elliptic problems with blow-up on the boundary,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 12 (1995), 155.   Google Scholar

[2]

Ph. Bénilan, H. Brezis and M. Crandall, A semilinear elliptic equation in $L^1(\mathbbR^N )$,, Ann. Sc. Norm. Sup. Pisa Cl. Sci., 2 (1975), 523.   Google Scholar

[3]

L. Caffarelli and L. Silvestre, Regularity theory for fully nonlinear integro-differential equaitons,, Comm. Pure Appl. Math., 62 (2009), 597.  doi: 10.1002/cpa.20274.  Google Scholar

[4]

Z. Chen and R. Song, Estimates on Green functions and poisson kernels for symmetric stable process,, Math. Ann., 312 (1998), 465.  doi: 10.1007/s002080050232.  Google Scholar

[5]

H. Chen, P. Felmer and A. Quaas, Large solution to elliptic equations involving fractional Laplacian,, accepted by Ann. Inst. H. Poincaré, ().  doi: 10.1016/j.anihpc.2014.08.001.  Google Scholar

[6]

H. Chen and H. Hajaiej, Existence, Non-existence, Uniqueness of solutions for semilinear elliptic equations involving measures concentrated on boundary,, arXiv:1410.2672 (2014)., (2014).   Google Scholar

[7]

R. Cignoli and M. Cottlar, An Introduction to Functional Analysis,, North-Holland, (1974).   Google Scholar

[8]

H. Chen and L. Véron, Semilinear fractional elliptic equations involving measures,, J. Differential equations, 257 (2014), 1457.  doi: 10.1016/j.jde.2014.05.012.  Google Scholar

[9]

Y. Du and Z. Guo, Uniqueness and layer analysis for boundary blow-up solutions,, J. Math. Pures Appl., 83 (2004), 739.  doi: 10.1016/j.matpur.2004.01.006.  Google Scholar

[10]

M. del Pino and R. Letelier, The influence of domain geometry in boundary blow-up elliptic problems,, Nonlinear Analysis: Theory, 48 (2002), 897.  doi: 10.1016/S0362-546X(00)00222-4.  Google Scholar

[11]

Y. Du, Z. Guo and F. Zhou, Boundary blow-up solutions with interior layers and spikes in a bistable problem,, Discrete Contin. Dyn. Syst., 19 (2007), 271.  doi: 10.3934/dcds.2007.19.271.  Google Scholar

[12]

P. Felmer and A. Quaas, Fundamental solutions and Liouville type theorems for nonlinear integral operators,, Advances in Mathematics, 226 (2011), 2712.  doi: 10.1016/j.aim.2010.09.023.  Google Scholar

[13]

J. B. Keller, On solutions of $\Delta u = f(u)$,, Comm. Pure Appl. Math., 10 (1957), 503.  doi: 10.1002/cpa.3160100402.  Google Scholar

[14]

J. Garcia-Melián, R. Letelier and J. de Lis, Uniqueness and asymptotic behaviour for solutions of semilinear problems with boundary blow-up,, Proc. Amer. Math. Soc., 129 (2001), 3593.  doi: 10.1090/S0002-9939-01-06229-3.  Google Scholar

[15]

Z. Guo and F. Zhou, Exact multiplicity for boundary blow-up solutions,, J. Differential Equations, 228 (2006), 486.  doi: 10.1016/j.jde.2006.02.012.  Google Scholar

[16]

R. Osserman, On the inequality $\Delta u = f(u)$,, Pac. J. Math., 7 (1957), 1641.   Google Scholar

[17]

T. Ouyang and J. Shi, Exact multiplicity of positive solutions for a class of semilinear problems,, J. Differential Equations, 146 (1998), 121.  doi: 10.1006/jdeq.1998.3414.  Google Scholar

[18]

M. Pertti, Geometry of Sets and Measures in Euclidean Spaces: Fractals and Rectifiability,, Cambridge University Press, (1995).  doi: 10.1017/CBO9780511623813.  Google Scholar

[19]

M. Marcus and L. Véron, Uniqueness and asymptotic behavior of solutions with boundary blow-up for a class of nonlinear elliptic equations,, Ann. Inst. H. Poincaré, 14 (1997), 237.  doi: 10.1016/S0294-1449(97)80146-1.  Google Scholar

[20]

M. Marcus and L. Véron, Existence and uniqueness results for large solutions of general nonlinear elliptic equation,, J. Evol. Equ., 3 (2003), 637.  doi: 10.1007/s00028-003-0122-y.  Google Scholar

[1]

Nicola Abatangelo. Large $s$-harmonic functions and boundary blow-up solutions for the fractional Laplacian. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 5555-5607. doi: 10.3934/dcds.2015.35.5555

[2]

Petri Juutinen. Convexity of solutions to boundary blow-up problems. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2267-2275. doi: 10.3934/cpaa.2013.12.2267

[3]

Yihong Du, Zongming Guo, Feng Zhou. Boundary blow-up solutions with interior layers and spikes in a bistable problem. Discrete & Continuous Dynamical Systems - A, 2007, 19 (2) : 271-298. doi: 10.3934/dcds.2007.19.271

[4]

Jong-Shenq Guo. Blow-up behavior for a quasilinear parabolic equation with nonlinear boundary condition. Discrete & Continuous Dynamical Systems - A, 2007, 18 (1) : 71-84. doi: 10.3934/dcds.2007.18.71

[5]

Pavol Quittner, Philippe Souplet. Blow-up rate of solutions of parabolic poblems with nonlinear boundary conditions. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 671-681. doi: 10.3934/dcdss.2012.5.671

[6]

Keng Deng, Zhihua Dong. Blow-up for the heat equation with a general memory boundary condition. Communications on Pure & Applied Analysis, 2012, 11 (5) : 2147-2156. doi: 10.3934/cpaa.2012.11.2147

[7]

Yihong Du, Zongming Guo. The degenerate logistic model and a singularly mixed boundary blow-up problem. Discrete & Continuous Dynamical Systems - A, 2006, 14 (1) : 1-29. doi: 10.3934/dcds.2006.14.1

[8]

Claudia Anedda, Giovanni Porru. Second order estimates for boundary blow-up solutions of elliptic equations. Conference Publications, 2007, 2007 (Special) : 54-63. doi: 10.3934/proc.2007.2007.54

[9]

Ronghua Jiang, Jun Zhou. Blow-up and global existence of solutions to a parabolic equation associated with the fraction p-Laplacian. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1205-1226. doi: 10.3934/cpaa.2019058

[10]

Qiang Lin, Xueteng Tian, Runzhang Xu, Meina Zhang. Blow up and blow up time for degenerate Kirchhoff-type wave problems involving the fractional Laplacian with arbitrary positive initial energy. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 0-0. doi: 10.3934/dcdss.2020160

[11]

Jian Zhang, Shihui Zhu, Xiaoguang Li. Rate of $L^2$-concentration of the blow-up solution for critical nonlinear Schrödinger equation with potential. Mathematical Control & Related Fields, 2011, 1 (1) : 119-127. doi: 10.3934/mcrf.2011.1.119

[12]

Shota Sato. Blow-up at space infinity of a solution with a moving singularity for a semilinear parabolic equation. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1225-1237. doi: 10.3934/cpaa.2011.10.1225

[13]

Tetsuya Ishiwata, Shigetoshi Yazaki. A fast blow-up solution and degenerate pinching arising in an anisotropic crystalline motion. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 2069-2090. doi: 10.3934/dcds.2014.34.2069

[14]

Frédéric Abergel, Jean-Michel Rakotoson. Gradient blow-up in Zygmund spaces for the very weak solution of a linear elliptic equation. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 1809-1818. doi: 10.3934/dcds.2013.33.1809

[15]

Binhua Feng. On the blow-up solutions for the fractional nonlinear Schrödinger equation with combined power-type nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1785-1804. doi: 10.3934/cpaa.2018085

[16]

Van Duong Dinh. On blow-up solutions to the focusing mass-critical nonlinear fractional Schrödinger equation. Communications on Pure & Applied Analysis, 2019, 18 (2) : 689-708. doi: 10.3934/cpaa.2019034

[17]

Zhijun Zhang. Boundary blow-up for elliptic problems involving exponential nonlinearities with nonlinear gradient terms and singular weights. Communications on Pure & Applied Analysis, 2007, 6 (2) : 521-529. doi: 10.3934/cpaa.2007.6.521

[18]

C. Brändle, F. Quirós, Julio D. Rossi. Non-simultaneous blow-up for a quasilinear parabolic system with reaction at the boundary. Communications on Pure & Applied Analysis, 2005, 4 (3) : 523-536. doi: 10.3934/cpaa.2005.4.523

[19]

Alexander Gladkov. Blow-up problem for semilinear heat equation with nonlinear nonlocal Neumann boundary condition. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2053-2068. doi: 10.3934/cpaa.2017101

[20]

Zhiqing Liu, Zhong Bo Fang. Blow-up phenomena for a nonlocal quasilinear parabolic equation with time-dependent coefficients under nonlinear boundary flux. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3619-3635. doi: 10.3934/dcdsb.2016113

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (18)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]