April  2016, 36(4): 1905-1926. doi: 10.3934/dcds.2016.36.1905

On inhomogeneous Strichartz estimates for fractional Schrödinger equations and their applications

1. 

Department of Mathematics, Pohang University of Science and Technology, Pohang 790-784, South Korea

2. 

School of Mathematics, Korea Institute for Advanced Study, Seoul 130-722, South Korea

3. 

Department of Mathematics, Sungkyunkwan University, Suwon 440-746, South Korea

Received  January 2015 Revised  July 2015 Published  September 2015

In this paper we obtain some new inhomogeneous Strichartz estimates for the fractional Schrödinger equation in the radial case. Then we apply them to the well-posedness theory for the equation $i\partial_{t}u+|\nabla|^{\alpha}u=V(x,t)u$, $1<\alpha<2$, with radial $\dot{H}^\gamma$ initial data below $L^2$ and radial potentials $V\in L_t^rL_x^w$ under the scaling-critical range $\alpha/r+n/w=\alpha$.
Citation: Chu-Hee Cho, Youngwoo Koh, Ihyeok Seo. On inhomogeneous Strichartz estimates for fractional Schrödinger equations and their applications. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 1905-1926. doi: 10.3934/dcds.2016.36.1905
References:
[1]

J. Bergh and J. Löfström, Interpolation Spaces, An Introduction,, Springer-Verlag, (1976).   Google Scholar

[2]

T. Cazenave and F. B. Weissler, Rapidly decaying solutions of the nonlinear Schrödinger equation,, Comm. Math. Phys., 147 (1992), 75.  doi: 10.1007/BF02099529.  Google Scholar

[3]

Y. Cho and S. Lee, Strichartz estimates in spherical coordinates,, Indiana Univ. Math. J., 62 (2013), 991.  doi: 10.1512/iumj.2013.62.4970.  Google Scholar

[4]

M. Christ and A. Kiselev, Maximal functions associated to filtrations,, J. Funct. Anal., 179 (2001), 409.  doi: 10.1006/jfan.2000.3687.  Google Scholar

[5]

E. Cordero and F. Nicola, Strichartz estimates in Wiener amalgam spaces for the Schrödinger equation,, Math. Nachr., 281 (2008), 25.  doi: 10.1002/mana.200610585.  Google Scholar

[6]

E. Cordero and F. Nicola, Some new Strichartz estimates for the Schrödinger equation,, J. Differential equations., 245 (2008), 1945.  doi: 10.1016/j.jde.2008.07.009.  Google Scholar

[7]

P. D'Ancona, V. Pierfelice and N. Visciglia, Some remarks on the Schrödinger equation with a potential in $L_t^rL_x^s$,, Math. Ann., 333 (2005), 271.  doi: 10.1007/s00208-005-0672-0.  Google Scholar

[8]

D. Foschi, Inhomogeneous Strichartz estimates,, J. Hyperbolic Differ. Equ., 2 (2005), 1.  doi: 10.1142/S0219891605000361.  Google Scholar

[9]

J. Ginibre and G. Velo, The global Cauchy problem for the nonlinear Schrödinger equation revisited,, Ann. Inst. H. Poincaré Anal. Non Linéare, 2 (1985), 309.   Google Scholar

[10]

L. Grafakos, Classical Fourier Analysis,, $2^{nd}$ edition, (2008).   Google Scholar

[11]

Z. Guo and Y. Wang, Improved Strichartz estimates for a class of dispersive equations in the radial case and their applications to nonlinear Schrödinger and wave equations,, J. Anal. Math., 124 (2014), 1.  doi: 10.1007/s11854-014-0025-6.  Google Scholar

[12]

T. Kato, An $L^{q,r}$ -theory for nonlinear Schrödinger equations,, in Spectral and scattering theory and applications, 23 (1994), 223.   Google Scholar

[13]

Y. Ke, Remark on the Strichartz estimates in the radial case,, J. Math. Anal. Appl., 387 (2012), 857.  doi: 10.1016/j.jmaa.2011.09.039.  Google Scholar

[14]

M. Keel and T. Tao, Endpoint Strichartz estimates,, Amer. J. Math., 120 (1998), 955.  doi: 10.1353/ajm.1998.0039.  Google Scholar

[15]

Y. Koh, Improved inhomogeneous Strichartz estimates for the Schrödinger equation,, J. Math. Anal. Appl., 373 (2011), 147.  doi: 10.1016/j.jmaa.2010.06.019.  Google Scholar

[16]

N. Laskin, Fractional quantum mechanics and Lévy path integrals,, Phys. Lett. A, 268 (2000), 298.  doi: 10.1016/S0375-9601(00)00201-2.  Google Scholar

[17]

S. Lee and I. Seo, A note on unique continuation for the Schrödinger equation,, J. Math. Anal. Appl., 389 (2012), 461.  doi: 10.1016/j.jmaa.2011.11.067.  Google Scholar

[18]

S. Lee and I. Seo, On inhomogeneous Strichartz estimates for the Schrödinger equation,, Rev. Mat. Iberoam., 30 (2014), 711.  doi: 10.4171/RMI/797.  Google Scholar

[19]

V. Naibo and A. Stefanov, On some Schrödinger and wave equations with time dependent potentials,, Math. Ann., 334 (2006), 325.  doi: 10.1007/s00208-005-0720-9.  Google Scholar

[20]

I. Seo, Unique continuation for the Schrödinger equation with potentials in Wiener amalgam spaces,, Indiana Univ. Math. J., 60 (2011), 1203.  doi: 10.1512/iumj.2011.60.4824.  Google Scholar

[21]

S. Shao, Sharp linear and bilinear restriction estimate for paraboloids in the cylinderically symmetric case,, Rev. Mat. Iberoam., 25 (2009), 1127.  doi: 10.4171/RMI/591.  Google Scholar

[22]

E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals,, Princeton Mathematical Series, (1993).   Google Scholar

[23]

R. S. Strichartz, Restriction of Fourier transforms to quadratic surfaces and decay of solutions of wave equations,, Duke Math. J., 44 (1977), 705.  doi: 10.1215/S0012-7094-77-04430-1.  Google Scholar

[24]

M. C. Vilela, Inhomogeneous Strichartz estimates for the Schrödinger equation,, Trans. Amer. Math. Soc., 359 (2007), 2123.  doi: 10.1090/S0002-9947-06-04099-2.  Google Scholar

show all references

References:
[1]

J. Bergh and J. Löfström, Interpolation Spaces, An Introduction,, Springer-Verlag, (1976).   Google Scholar

[2]

T. Cazenave and F. B. Weissler, Rapidly decaying solutions of the nonlinear Schrödinger equation,, Comm. Math. Phys., 147 (1992), 75.  doi: 10.1007/BF02099529.  Google Scholar

[3]

Y. Cho and S. Lee, Strichartz estimates in spherical coordinates,, Indiana Univ. Math. J., 62 (2013), 991.  doi: 10.1512/iumj.2013.62.4970.  Google Scholar

[4]

M. Christ and A. Kiselev, Maximal functions associated to filtrations,, J. Funct. Anal., 179 (2001), 409.  doi: 10.1006/jfan.2000.3687.  Google Scholar

[5]

E. Cordero and F. Nicola, Strichartz estimates in Wiener amalgam spaces for the Schrödinger equation,, Math. Nachr., 281 (2008), 25.  doi: 10.1002/mana.200610585.  Google Scholar

[6]

E. Cordero and F. Nicola, Some new Strichartz estimates for the Schrödinger equation,, J. Differential equations., 245 (2008), 1945.  doi: 10.1016/j.jde.2008.07.009.  Google Scholar

[7]

P. D'Ancona, V. Pierfelice and N. Visciglia, Some remarks on the Schrödinger equation with a potential in $L_t^rL_x^s$,, Math. Ann., 333 (2005), 271.  doi: 10.1007/s00208-005-0672-0.  Google Scholar

[8]

D. Foschi, Inhomogeneous Strichartz estimates,, J. Hyperbolic Differ. Equ., 2 (2005), 1.  doi: 10.1142/S0219891605000361.  Google Scholar

[9]

J. Ginibre and G. Velo, The global Cauchy problem for the nonlinear Schrödinger equation revisited,, Ann. Inst. H. Poincaré Anal. Non Linéare, 2 (1985), 309.   Google Scholar

[10]

L. Grafakos, Classical Fourier Analysis,, $2^{nd}$ edition, (2008).   Google Scholar

[11]

Z. Guo and Y. Wang, Improved Strichartz estimates for a class of dispersive equations in the radial case and their applications to nonlinear Schrödinger and wave equations,, J. Anal. Math., 124 (2014), 1.  doi: 10.1007/s11854-014-0025-6.  Google Scholar

[12]

T. Kato, An $L^{q,r}$ -theory for nonlinear Schrödinger equations,, in Spectral and scattering theory and applications, 23 (1994), 223.   Google Scholar

[13]

Y. Ke, Remark on the Strichartz estimates in the radial case,, J. Math. Anal. Appl., 387 (2012), 857.  doi: 10.1016/j.jmaa.2011.09.039.  Google Scholar

[14]

M. Keel and T. Tao, Endpoint Strichartz estimates,, Amer. J. Math., 120 (1998), 955.  doi: 10.1353/ajm.1998.0039.  Google Scholar

[15]

Y. Koh, Improved inhomogeneous Strichartz estimates for the Schrödinger equation,, J. Math. Anal. Appl., 373 (2011), 147.  doi: 10.1016/j.jmaa.2010.06.019.  Google Scholar

[16]

N. Laskin, Fractional quantum mechanics and Lévy path integrals,, Phys. Lett. A, 268 (2000), 298.  doi: 10.1016/S0375-9601(00)00201-2.  Google Scholar

[17]

S. Lee and I. Seo, A note on unique continuation for the Schrödinger equation,, J. Math. Anal. Appl., 389 (2012), 461.  doi: 10.1016/j.jmaa.2011.11.067.  Google Scholar

[18]

S. Lee and I. Seo, On inhomogeneous Strichartz estimates for the Schrödinger equation,, Rev. Mat. Iberoam., 30 (2014), 711.  doi: 10.4171/RMI/797.  Google Scholar

[19]

V. Naibo and A. Stefanov, On some Schrödinger and wave equations with time dependent potentials,, Math. Ann., 334 (2006), 325.  doi: 10.1007/s00208-005-0720-9.  Google Scholar

[20]

I. Seo, Unique continuation for the Schrödinger equation with potentials in Wiener amalgam spaces,, Indiana Univ. Math. J., 60 (2011), 1203.  doi: 10.1512/iumj.2011.60.4824.  Google Scholar

[21]

S. Shao, Sharp linear and bilinear restriction estimate for paraboloids in the cylinderically symmetric case,, Rev. Mat. Iberoam., 25 (2009), 1127.  doi: 10.4171/RMI/591.  Google Scholar

[22]

E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals,, Princeton Mathematical Series, (1993).   Google Scholar

[23]

R. S. Strichartz, Restriction of Fourier transforms to quadratic surfaces and decay of solutions of wave equations,, Duke Math. J., 44 (1977), 705.  doi: 10.1215/S0012-7094-77-04430-1.  Google Scholar

[24]

M. C. Vilela, Inhomogeneous Strichartz estimates for the Schrödinger equation,, Trans. Amer. Math. Soc., 359 (2007), 2123.  doi: 10.1090/S0002-9947-06-04099-2.  Google Scholar

[1]

Massimo Cicognani, Michael Reissig. Well-posedness for degenerate Schrödinger equations. Evolution Equations & Control Theory, 2014, 3 (1) : 15-33. doi: 10.3934/eect.2014.3.15

[2]

Yonggeun Cho, Gyeongha Hwang, Soonsik Kwon, Sanghyuk Lee. Well-posedness and ill-posedness for the cubic fractional Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (7) : 2863-2880. doi: 10.3934/dcds.2015.35.2863

[3]

Youngwoo Koh, Ihyeok Seo. Strichartz estimates for Schrödinger equations in weighted $L^2$ spaces and their applications. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 4877-4906. doi: 10.3934/dcds.2017210

[4]

Hiroyuki Hirayama, Mamoru Okamoto. Well-posedness and scattering for fourth order nonlinear Schrödinger type equations at the scaling critical regularity. Communications on Pure & Applied Analysis, 2016, 15 (3) : 831-851. doi: 10.3934/cpaa.2016.15.831

[5]

Igor Chueshov, Alexey Shcherbina. Semi-weak well-posedness and attractors for 2D Schrödinger-Boussinesq equations. Evolution Equations & Control Theory, 2012, 1 (1) : 57-80. doi: 10.3934/eect.2012.1.57

[6]

Changxing Miao, Bo Zhang. Global well-posedness of the Cauchy problem for nonlinear Schrödinger-type equations. Discrete & Continuous Dynamical Systems - A, 2007, 17 (1) : 181-200. doi: 10.3934/dcds.2007.17.181

[7]

Chengchun Hao. Well-posedness for one-dimensional derivative nonlinear Schrödinger equations. Communications on Pure & Applied Analysis, 2007, 6 (4) : 997-1021. doi: 10.3934/cpaa.2007.6.997

[8]

Hiroyuki Hirayama. Well-posedness and scattering for a system of quadratic derivative nonlinear Schrödinger equations with low regularity initial data. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1563-1591. doi: 10.3934/cpaa.2014.13.1563

[9]

Tarek Saanouni. Global well-posedness of some high-order semilinear wave and Schrödinger type equations with exponential nonlinearity. Communications on Pure & Applied Analysis, 2014, 13 (1) : 273-291. doi: 10.3934/cpaa.2014.13.273

[10]

Yonggeun Cho, Gyeongha Hwang, Tohru Ozawa. Global well-posedness of critical nonlinear Schrödinger equations below $L^2$. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1389-1405. doi: 10.3934/dcds.2013.33.1389

[11]

Takeshi Wada. A remark on local well-posedness for nonlinear Schrödinger equations with power nonlinearity-an alternative approach. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1359-1374. doi: 10.3934/cpaa.2019066

[12]

Tadahiro Oh, Mamoru Okamoto, Oana Pocovnicu. On the probabilistic well-posedness of the nonlinear Schrödinger equations with non-algebraic nonlinearities. Discrete & Continuous Dynamical Systems - A, 2019, 39 (6) : 3479-3520. doi: 10.3934/dcds.2019144

[13]

Ugur G. Abdulla. On the optimal control of the free boundary problems for the second order parabolic equations. I. Well-posedness and convergence of the method of lines. Inverse Problems & Imaging, 2013, 7 (2) : 307-340. doi: 10.3934/ipi.2013.7.307

[14]

Haruya Mizutani. Strichartz estimates for Schrödinger equations with variable coefficients and unbounded potentials II. Superquadratic potentials. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2177-2210. doi: 10.3934/cpaa.2014.13.2177

[15]

Younghun Hong. Strichartz estimates for $N$-body Schrödinger operators with small potential interactions. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5355-5365. doi: 10.3934/dcds.2017233

[16]

Michael Goldberg. Strichartz estimates for Schrödinger operators with a non-smooth magnetic potential. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 109-118. doi: 10.3934/dcds.2011.31.109

[17]

Yuanyuan Ren, Yongsheng Li, Wei Yan. Sharp well-posedness of the Cauchy problem for the fourth order nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2018, 17 (2) : 487-504. doi: 10.3934/cpaa.2018027

[18]

Takafumi Akahori. Low regularity global well-posedness for the nonlinear Schrödinger equation on closed manifolds. Communications on Pure & Applied Analysis, 2010, 9 (2) : 261-280. doi: 10.3934/cpaa.2010.9.261

[19]

Seckin Demirbas. Local well-posedness for 2-D Schrödinger equation on irrational tori and bounds on Sobolev norms. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1517-1530. doi: 10.3934/cpaa.2017072

[20]

Nobu Kishimoto. Local well-posedness for the Cauchy problem of the quadratic Schrödinger equation with nonlinearity $\bar u^2$. Communications on Pure & Applied Analysis, 2008, 7 (5) : 1123-1143. doi: 10.3934/cpaa.2008.7.1123

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (30)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]