\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Global solutions to a one-dimensional non-conservative two-phase model

Abstract / Introduction Related Papers Cited by
  • In this paper we investigate a basic one-dimensional viscous gas-liquid model based on the two-fluid model formulation. The gas is modeled as a polytropic gas whereas liquid is assumed to be incompressible. A main challenge with this model is the appearance of a non-conservative pressure term which possibly also blows up at transition to single-phase liquid flow (due to incompressible liquid). We investigate the model both in a finite domain (initial-boundary value problem) and in the whole space (Cauchy problem). We demonstrate that under appropriate smallness conditions on initial data we can obtain time-independent estimates which allow us to show existence and uniqueness of regular solutions as well as to gain insight into the long-time behavior of the model. These results rely strongly on the fact that we can derive appropriate upper and lower uniform bounds on the gas and liquid mass. In particular, the estimates guarantee that gas does not vanish at any point for any time when initial gas phase has a positive lower limit. The discussion of the Cauchy problem is general enough to take into account the possibility that the liquid phase may vanish at some points at initial time.
    Mathematics Subject Classification: Primary: 76T10, 76N10; Secondary: 65M12, 35L60.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    D. Bresch and B. Desjardins, Existence of global weak solutions for a 2D viscous shallow water equations and convergence to the quasi-geostrophic model, Comm. Math. Phys., 238 (2003), 211-223.doi: 10.1007/s00220-003-0859-8.

    [2]

    D. Bresch, B. Desjardins and C.-K. Lin, On some compressible fluid models Korteweg, lubrication, and shallow water systems, Comm. Partial Differential Equations, 28 (2003), 843-868.doi: 10.1081/PDE-120020499.

    [3]

    D. Bresch and B. Desjardins, Stabilité de solutions faibles globales pour leséquations de Navier-Stokes compressible avec température, C. R. Math. Acad. Sci., 343 (2006), 219-224.doi: 10.1016/j.crma.2006.05.016.

    [4]

    D. Bresch, B. Desjardins, J. M. Ghidaglia and E. Grenier, Global weak solutions to a generic two-fluid model, Arch. Rational Mech. Anal., 196 (2010), 599-629.doi: 10.1007/s00205-009-0261-6.

    [5]

    D. Bresch, X. D. Huang and J. Li, Global weak solutions to one-dimensional non-conservative viscous compressible two-phase system, Comm. Math. Phys., 309 (2012), 737-755.doi: 10.1007/s00220-011-1379-6.

    [6]

    F. Coquel, K. El Amine, E. Godlewki, B. Perthame and P. Rascle, A numerical method using upwind schemes for the resolution of two-phase flows, J. Comput. Phys., 136 (1997), 272-288.doi: 10.1006/jcph.1997.5730.

    [7]

    Y. Cho, H. J. Choe and H. Kim, Unique solvability of the initial boundary value problems for compressible viscous fluids, J. Math. Pures Appl., 83 (2004), 243-275.doi: 10.1016/j.matpur.2003.11.004.

    [8]

    S. Evje and T. Flåtten, Hybrid flux-splitting schemes for a common two-fluid model, J. Comput. Phys., 192 (2003), 175-210.doi: 10.1016/j.jcp.2003.07.001.

    [9]

    S. Evje and T. Flåtten, Weakly implicit numerical schemes for a two-fluid model, SIAM J. Sci. Comput., 26 (2005), 1449-1484.doi: 10.1137/030600631.

    [10]

    S. Evje, Weak solutions for a gas-liquid model relevant for describing gas-kick in oil wells, SIAM J. Math. Anal., 43 (2011), 1887-1922.doi: 10.1137/100813932.

    [11]

    S. Evje and H. Y. Wen, Weak solutions of a gas-liquid drift-flux model with general slip law for wellbore operators, Discrete Contin. Dyn. Syst., 33 (2013), 4497-4530.doi: 10.3934/dcds.2013.33.4497.

    [12]

    A. C. Fowler and P. E. Lisseter, Flooding and flow reversal in annular two-phase flow, SIAM J. Appl. Math., 52 (1992), 15-33.doi: 10.1137/0152002.

    [13]

    Z. H. Guo, Q. S. Jiu and Z. P. Xin, Spherically symmetric isentropic compressible flows with density-dependent viscosity coefficients, SIAM J. Math. Anal., 39 (2008), 1402-1427.doi: 10.1137/070680333.

    [14]

    B.L. Keyfitz, R. Sanders, and M. Sever, Lack of hyperbolicity in the two-fluid model for two-phase incompressible flow, Discrete Contin. Dyn. Syst. Ser. B, 3 (2003), 541-563.doi: 10.3934/dcdsb.2003.3.541.

    [15]

    H.-L. Li, J. Li and Z. P. Xin, Vanishing of Vacuum States and Blow-up Phenomena of the Compressible Navier-Stokes Equations, Commun. Math. Phys., 281 (2008), 401-444.doi: 10.1007/s00220-008-0495-4.

    [16]

    A. Mellet and A. Vasseur, On the barotropic compressible Navier-Stokes equations, Comm. Partial Differential Equations, 32 (2007), 431-452.doi: 10.1080/03605300600857079.

    [17]

    A. Mellet and A. Vasseur, Existence and uniqueness of global strong solutions for one-dimensional compressible Navier-Stokes equations, SIAM J. Math. Anal., 39 (2008), 1344-1365.doi: 10.1137/060658199.

    [18]

    A. Prosperetti and G. Tryggvason, Computational Methods for Multiphase Flow, Corrected paperback reprint of the 2007 original. Cambridge University Press, Cambridge, 2009.

    [19]

    M. D. Thanh, D. Kröner and N. T. Nam, Numerical approximation for a Baer-Nunziato model of two-phase flows, Appl. Numer. Math., 61 (2011), 702-721.doi: 10.1016/j.apnum.2011.01.004.

    [20]

    L. Yao, H. L. Guo and Z. H. Guo, A note on viscous liquid-gas two-phase flow model with mass-dependent viscosity and vacuum, Nonlinear Anal. Real World Appl., 13 (2012), 2323-2342.doi: 10.1016/j.nonrwa.2012.02.001.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(183) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return