April  2016, 36(4): 2027-2046. doi: 10.3934/dcds.2016.36.2027

The three-dimensional center problem for the zero-Hopf singularity

1. 

Departament de Matemàtica, Universitat de Lleida, Avda. Jaume II, 69, 25001 Lleida, Spain

2. 

Departamento de Matemática, Instituto Superior Técnico , Universidade Técnica de Lisboa, Av. Rovisco Pais 1049-001, Lisboa

Received  January 2015 Revised  July 2015 Published  September 2015

In this work we extend well-known techniques for solving the Poincaré-Lyapunov nondegenerate analytic center problem in the plane to the 3-dimensional center problem at the zero-Hopf singularity. Thus we characterize the existence of a neighborhood of the singularity completely foliated by periodic orbits (including continua of equilibria) via an analytic Poincaré return map. The vanishing of the first terms in a Taylor expansion of the associated displacement map provides us with the necessary 3-dimensional center conditions in the parameter space of the family whereas the sufficiency is obtained through symmetry-integrability methods. Finally we use the proposed method to classify the 3-dimensional centers of some quadratic polynomial differential families possessing a zero-Hopf singularity.
Citation: Isaac A. García, Claudia Valls. The three-dimensional center problem for the zero-Hopf singularity. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 2027-2046. doi: 10.3934/dcds.2016.36.2027
References:
[1]

N. N. Bautin, On the number of limit cycles which appear with the variation of the coefficients from an equilibrium position of focus or center type,, Math. USSR-Sb, 1954 (1954), 397.   Google Scholar

[2]

C. Christopher and C. Li, Limit Cycles of Differential Equations,, Advanced Courses in Mathematics. CRM Barcelona. Birkhäuser Verlag, (2007).   Google Scholar

[3]

W. Kapteyn, On the midpoints of integral curves of differential equations of the first degree,, Nederl. Akad. Wetensch. Verslag. Afd. Natuurk. Konikl. Nederland (1911), (1911), 1446.   Google Scholar

[4]

W. Kapteyn, New investigations on the midpoints of integrals of differential equations of the first degree,, Nederl. Akad. Wetensch. Verslag. Afd. Natuurk. Konikl. Nederland, 100 (1912), 1354.   Google Scholar

[5]

A. M. Liapunov, Problème Général de la Stabilité du Mouvement,, Ann. of Math. Studies 17, (1947).   Google Scholar

[6]

J. Llibre, C. Pantazi and S. Walcher, First integrals of local analytic differential systems,, Bull. Sci. Math., 136 (2012), 342.  doi: 10.1016/j.bulsci.2011.10.003.  Google Scholar

[7]

J. Llibre and C. Valls, Classification of the centers, their cyclicity and isocronicity for the generalized quadratic polynomial differential systems,, J. Math. Anal. Appl., 357 (2009), 427.   Google Scholar

[8]

R. Moussu, Symétrie et forme normale des centres et foyers dégénérés,, Ergodic Theory Dynam. Systems, 2 (1982), 241.   Google Scholar

[9]

H. Poincaré, Mémoire sur les courbes définies par les équations différentielles,, Oeuvres de Henri Poincaré, (1051), 95.   Google Scholar

[10]

H. .Zołądek, Quadratic systems with center and their perturbations,, J. Differential Equations, 109 (1994), 223.  doi: 10.1006/jdeq.1994.1049.  Google Scholar

show all references

References:
[1]

N. N. Bautin, On the number of limit cycles which appear with the variation of the coefficients from an equilibrium position of focus or center type,, Math. USSR-Sb, 1954 (1954), 397.   Google Scholar

[2]

C. Christopher and C. Li, Limit Cycles of Differential Equations,, Advanced Courses in Mathematics. CRM Barcelona. Birkhäuser Verlag, (2007).   Google Scholar

[3]

W. Kapteyn, On the midpoints of integral curves of differential equations of the first degree,, Nederl. Akad. Wetensch. Verslag. Afd. Natuurk. Konikl. Nederland (1911), (1911), 1446.   Google Scholar

[4]

W. Kapteyn, New investigations on the midpoints of integrals of differential equations of the first degree,, Nederl. Akad. Wetensch. Verslag. Afd. Natuurk. Konikl. Nederland, 100 (1912), 1354.   Google Scholar

[5]

A. M. Liapunov, Problème Général de la Stabilité du Mouvement,, Ann. of Math. Studies 17, (1947).   Google Scholar

[6]

J. Llibre, C. Pantazi and S. Walcher, First integrals of local analytic differential systems,, Bull. Sci. Math., 136 (2012), 342.  doi: 10.1016/j.bulsci.2011.10.003.  Google Scholar

[7]

J. Llibre and C. Valls, Classification of the centers, their cyclicity and isocronicity for the generalized quadratic polynomial differential systems,, J. Math. Anal. Appl., 357 (2009), 427.   Google Scholar

[8]

R. Moussu, Symétrie et forme normale des centres et foyers dégénérés,, Ergodic Theory Dynam. Systems, 2 (1982), 241.   Google Scholar

[9]

H. Poincaré, Mémoire sur les courbes définies par les équations différentielles,, Oeuvres de Henri Poincaré, (1051), 95.   Google Scholar

[10]

H. .Zołądek, Quadratic systems with center and their perturbations,, J. Differential Equations, 109 (1994), 223.  doi: 10.1006/jdeq.1994.1049.  Google Scholar

[1]

Shuang Chen, Jinqiao Duan, Ji Li. Effective reduction of a three-dimensional circadian oscillator model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020349

[2]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020351

[3]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[4]

Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240

[5]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[6]

Susmita Sadhu. Complex oscillatory patterns near singular Hopf bifurcation in a two-timescale ecosystem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020342

[7]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[8]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[9]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[10]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[11]

Anton A. Kutsenko. Isomorphism between one-Dimensional and multidimensional finite difference operators. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020270

[12]

Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020031

[13]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[14]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[15]

Mingjun Zhou, Jingxue Yin. Continuous subsonic-sonic flows in a two-dimensional semi-infinitely long nozzle. Electronic Research Archive, , () : -. doi: 10.3934/era.2020122

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (185)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]