Advanced Search
Article Contents
Article Contents

The three-dimensional center problem for the zero-Hopf singularity

Abstract Related Papers Cited by
  • In this work we extend well-known techniques for solving the Poincaré-Lyapunov nondegenerate analytic center problem in the plane to the 3-dimensional center problem at the zero-Hopf singularity. Thus we characterize the existence of a neighborhood of the singularity completely foliated by periodic orbits (including continua of equilibria) via an analytic Poincaré return map. The vanishing of the first terms in a Taylor expansion of the associated displacement map provides us with the necessary 3-dimensional center conditions in the parameter space of the family whereas the sufficiency is obtained through symmetry-integrability methods. Finally we use the proposed method to classify the 3-dimensional centers of some quadratic polynomial differential families possessing a zero-Hopf singularity.
    Mathematics Subject Classification: 37G15, 37G10, 34C07.


    \begin{equation} \\ \end{equation}
  • [1]

    N. N. Bautin, On the number of limit cycles which appear with the variation of the coefficients from an equilibrium position of focus or center type, Math. USSR-Sb, 1954 (1954), 397-413.


    C. Christopher and C. Li, Limit Cycles of Differential Equations, Advanced Courses in Mathematics. CRM Barcelona. Birkhäuser Verlag, Basel, 2007.


    W. Kapteyn, On the midpoints of integral curves of differential equations of the first degree, Nederl. Akad. Wetensch. Verslag. Afd. Natuurk. Konikl. Nederland (1911), 1446-1457 (Dutch).


    W. Kapteyn, New investigations on the midpoints of integrals of differential equations of the first degree, Nederl. Akad. Wetensch. Verslag. Afd. Natuurk. Konikl. Nederland, 100 (1912), 1354-1365, 21 27-33 (Dutch).


    A. M. Liapunov, Problème Général de la Stabilité du Mouvement, Ann. of Math. Studies 17, Princeton Univ. Press, 1947.


    J. Llibre, C. Pantazi and S. Walcher, First integrals of local analytic differential systems, Bull. Sci. Math., 136 (2012), 342-359.doi: 10.1016/j.bulsci.2011.10.003.


    J. Llibre and C. Valls, Classification of the centers, their cyclicity and isocronicity for the generalized quadratic polynomial differential systems, J. Math. Anal. Appl., 357 (2009), 427-437.


    R. Moussu, Symétrie et forme normale des centres et foyers dégénérés, Ergodic Theory Dynam. Systems, 2 (1982), 241-251.


    H. Poincaré, Mémoire sur les courbes définies par les équations différentielles, Oeuvres de Henri Poincaré, Vol. I, Gauthiers-Villars, Paris, 1051, 95-114.


    H. .Zołądek, Quadratic systems with center and their perturbations, J. Differential Equations, 109 (1994), 223-273.doi: 10.1006/jdeq.1994.1049.

  • 加载中

Article Metrics

HTML views() PDF downloads(461) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint