April  2016, 36(4): 2047-2067. doi: 10.3934/dcds.2016.36.2047

KdV waves in atomic chains with nonlocal interactions

1. 

Westfälische Wilhelms-Universität Münster, Institut für Numerische und Angewandte Mathematik, Einsteinstraße 62, 48149 Münster, Germany

2. 

Technische Universität München, Zentrum Mathematik, Boltzmannstraße 3, 85747 Garching, Germany

Received  March 2015 Revised  June 2015 Published  September 2015

We consider atomic chains with nonlocal particle interactions and prove the existence of near-sonic solitary waves. Both our result and the general proof strategy are reminiscent of the seminal paper by Friesecke and Pego on the KdV limit of chains with nearest neighbor interactions but differ in the following two aspects: First, we allow for a wider class of atomic systems and must hence replace the distance profile by the velocity profile. Second, in the asymptotic analysis we avoid a detailed Fourier pole characterization of the nonlocal integral operators and employ the contraction mapping principle to solve the final fixed point problem.
Citation: Michael Herrmann, Alice Mikikits-Leitner. KdV waves in atomic chains with nonlocal interactions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 2047-2067. doi: 10.3934/dcds.2016.36.2047
References:
[1]

M. Chirilus-Bruckner, C. Chong, O. Prill and G. Schneider, Rigorous description of macroscopic wave packets in infinite periodic chains of coupled oscillators by modulation equations,, Discrete Contin. Dyn. Syst. Ser. S, 5 (2012), 879.  doi: 10.3934/dcdss.2012.5.879.  Google Scholar

[2]

G. Friesecke and A. Mikikits-Leitner, Cnoidal waves on Fermi-Pasta-Ulam lattices, 2014,, To appear in J. Dyn. Diff. Equat., ().   Google Scholar

[3]

G. Friesecke and R. L. Pego, Solitary waves on FPU lattices. I. Qualitative properties, renormalization and continuum limit,, Nonlinearity, 12 (1999), 1601.  doi: 10.1088/0951-7715/12/6/311.  Google Scholar

[4]

G. Friesecke and R. L. Pego, Solitary waves on FPU lattices. II. Linear implies nonlinear stability,, Nonlinearity, 15 (2002), 1343.  doi: 10.1088/0951-7715/15/4/317.  Google Scholar

[5]

G. Friesecke and R. L. Pego, Solitary waves on Fermi-Pasta-Ulam lattices. III. Howland-type Floquet theory,, Nonlinearity, 17 (2004), 207.  doi: 10.1088/0951-7715/17/1/013.  Google Scholar

[6]

G. Friesecke and R. L. Pego, Solitary waves on Fermi-Pasta-Ulam lattices. IV. Proof of stability at low energy,, Nonlinearity, 17 (2004), 229.  doi: 10.1088/0951-7715/17/1/014.  Google Scholar

[7]

J. Gaison, S. Moskow, J. D. Wright and Q. Zhang, Approximation of polyatomic FPU lattices by KdV equations,, Multiscale Model. Simul., 12 (2014), 953.  doi: 10.1137/130941638.  Google Scholar

[8]

M. Herrmann, Unimodal wavetrains and solitons in convex Fermi-Pasta-Ulam chains,, Proc. Roy. Soc. Edinburgh Sect. A, 140 (2010), 753.  doi: 10.1017/S0308210509000146.  Google Scholar

[9]

M. Herrmann, K. Matthies, H. Schwetlick and J. Zimmer, Subsonic phase transition waves in bistable lattice models with small spinodal region,, SIAM J. Math. Anal., 45 (2013), 2625.  doi: 10.1137/120877878.  Google Scholar

[10]

M. Herrmann and J. D. M. Rademacher, Heteroclinic travelling waves in convex FPU-type chains,, SIAM J. Math. Anal., 42 (2010), 1483.  doi: 10.1137/080743147.  Google Scholar

[11]

A. Hoffman and C. E. Wayne, Counter-propagating two-soliton solutions in the Fermi-Pasta-Ulam lattice,, Nonlinearity, 21 (2008), 2911.  doi: 10.1088/0951-7715/21/12/011.  Google Scholar

[12]

A. Hoffman and C. E. Wayne, Asymptotic two-soliton solutions in the Fermi-Pasta-Ulam model,, J. Dynam. Differential Equations, 21 (2009), 343.  doi: 10.1007/s10884-009-9134-9.  Google Scholar

[13]

A. Hoffman and C. E. Wayne, A simple proof of the stability of solitary waves in the Fermi-Pasta-Ulam model near the KdV limit,, in Infinite dimensional dynamical systems, (2013), 185.  doi: 10.1007/978-1-4614-4523-4_7.  Google Scholar

[14]

T. Mizumachi, $N$-soliton states of the Fermi-Pasta-Ulam lattices,, SIAM J. Math. Anal., 43 (2011), 2170.  doi: 10.1137/100792457.  Google Scholar

[15]

T. Mizumachi, Asymptotic stability of $N$-solitary waves of the FPU lattices,, Arch. Ration. Mech. Anal., 207 (2013), 393.  doi: 10.1007/s00205-012-0564-x.  Google Scholar

[16]

P. M. Morse and H. Feshbach, Methods of Theoretical Physics. 2 volumes,, McGraw-Hill Book Co., (1953).   Google Scholar

[17]

G. Schneider and C. E. Wayne, Counter-propagating waves on fluid surfaces and the continuum limit of the Fermi-Pasta-Ulam model,, in International Conference on Differential Equations, (1999), 390.   Google Scholar

[18]

N. J. Zabusky and M. D. Kruskal, Interaction of 'solitons' in a collisionless plasma and the recurrence of initial states,, Phys. Rev. Lett., 15 (1965), 240.  doi: 10.1103/PhysRevLett.15.240.  Google Scholar

show all references

References:
[1]

M. Chirilus-Bruckner, C. Chong, O. Prill and G. Schneider, Rigorous description of macroscopic wave packets in infinite periodic chains of coupled oscillators by modulation equations,, Discrete Contin. Dyn. Syst. Ser. S, 5 (2012), 879.  doi: 10.3934/dcdss.2012.5.879.  Google Scholar

[2]

G. Friesecke and A. Mikikits-Leitner, Cnoidal waves on Fermi-Pasta-Ulam lattices, 2014,, To appear in J. Dyn. Diff. Equat., ().   Google Scholar

[3]

G. Friesecke and R. L. Pego, Solitary waves on FPU lattices. I. Qualitative properties, renormalization and continuum limit,, Nonlinearity, 12 (1999), 1601.  doi: 10.1088/0951-7715/12/6/311.  Google Scholar

[4]

G. Friesecke and R. L. Pego, Solitary waves on FPU lattices. II. Linear implies nonlinear stability,, Nonlinearity, 15 (2002), 1343.  doi: 10.1088/0951-7715/15/4/317.  Google Scholar

[5]

G. Friesecke and R. L. Pego, Solitary waves on Fermi-Pasta-Ulam lattices. III. Howland-type Floquet theory,, Nonlinearity, 17 (2004), 207.  doi: 10.1088/0951-7715/17/1/013.  Google Scholar

[6]

G. Friesecke and R. L. Pego, Solitary waves on Fermi-Pasta-Ulam lattices. IV. Proof of stability at low energy,, Nonlinearity, 17 (2004), 229.  doi: 10.1088/0951-7715/17/1/014.  Google Scholar

[7]

J. Gaison, S. Moskow, J. D. Wright and Q. Zhang, Approximation of polyatomic FPU lattices by KdV equations,, Multiscale Model. Simul., 12 (2014), 953.  doi: 10.1137/130941638.  Google Scholar

[8]

M. Herrmann, Unimodal wavetrains and solitons in convex Fermi-Pasta-Ulam chains,, Proc. Roy. Soc. Edinburgh Sect. A, 140 (2010), 753.  doi: 10.1017/S0308210509000146.  Google Scholar

[9]

M. Herrmann, K. Matthies, H. Schwetlick and J. Zimmer, Subsonic phase transition waves in bistable lattice models with small spinodal region,, SIAM J. Math. Anal., 45 (2013), 2625.  doi: 10.1137/120877878.  Google Scholar

[10]

M. Herrmann and J. D. M. Rademacher, Heteroclinic travelling waves in convex FPU-type chains,, SIAM J. Math. Anal., 42 (2010), 1483.  doi: 10.1137/080743147.  Google Scholar

[11]

A. Hoffman and C. E. Wayne, Counter-propagating two-soliton solutions in the Fermi-Pasta-Ulam lattice,, Nonlinearity, 21 (2008), 2911.  doi: 10.1088/0951-7715/21/12/011.  Google Scholar

[12]

A. Hoffman and C. E. Wayne, Asymptotic two-soliton solutions in the Fermi-Pasta-Ulam model,, J. Dynam. Differential Equations, 21 (2009), 343.  doi: 10.1007/s10884-009-9134-9.  Google Scholar

[13]

A. Hoffman and C. E. Wayne, A simple proof of the stability of solitary waves in the Fermi-Pasta-Ulam model near the KdV limit,, in Infinite dimensional dynamical systems, (2013), 185.  doi: 10.1007/978-1-4614-4523-4_7.  Google Scholar

[14]

T. Mizumachi, $N$-soliton states of the Fermi-Pasta-Ulam lattices,, SIAM J. Math. Anal., 43 (2011), 2170.  doi: 10.1137/100792457.  Google Scholar

[15]

T. Mizumachi, Asymptotic stability of $N$-solitary waves of the FPU lattices,, Arch. Ration. Mech. Anal., 207 (2013), 393.  doi: 10.1007/s00205-012-0564-x.  Google Scholar

[16]

P. M. Morse and H. Feshbach, Methods of Theoretical Physics. 2 volumes,, McGraw-Hill Book Co., (1953).   Google Scholar

[17]

G. Schneider and C. E. Wayne, Counter-propagating waves on fluid surfaces and the continuum limit of the Fermi-Pasta-Ulam model,, in International Conference on Differential Equations, (1999), 390.   Google Scholar

[18]

N. J. Zabusky and M. D. Kruskal, Interaction of 'solitons' in a collisionless plasma and the recurrence of initial states,, Phys. Rev. Lett., 15 (1965), 240.  doi: 10.1103/PhysRevLett.15.240.  Google Scholar

[1]

Adrian Viorel, Cristian D. Alecsa, Titus O. Pinţa. Asymptotic analysis of a structure-preserving integrator for damped Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020407

[2]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[3]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[4]

Huanhuan Tian, Maoan Han. Limit cycle bifurcations of piecewise smooth near-Hamiltonian systems with a switching curve. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020368

[5]

Tadahiro Oh, Yuzhao Wang. On global well-posedness of the modified KdV equation in modulation spaces. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2020393

[6]

Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024

[7]

Agnaldo José Ferrari, Tatiana Miguel Rodrigues de Souza. Rotated $ A_n $-lattice codes of full diversity. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020118

[8]

François Dubois. Third order equivalent equation of lattice Boltzmann scheme. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 221-248. doi: 10.3934/dcds.2009.23.221

[9]

Yu-Jhe Huang, Zhong-Fu Huang, Jonq Juang, Yu-Hao Liang. Flocking of non-identical Cucker-Smale models on general coupling network. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1111-1127. doi: 10.3934/dcdsb.2020155

[10]

Simon Hochgerner. Symmetry actuated closed-loop Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 641-669. doi: 10.3934/jgm.2020030

[11]

Hua Shi, Xiang Zhang, Yuyan Zhang. Complex planar Hamiltonian systems: Linearization and dynamics. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020406

[12]

Manuel de León, Víctor M. Jiménez, Manuel Lainz. Contact Hamiltonian and Lagrangian systems with nonholonomic constraints. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2021001

[13]

Jaume Llibre, Claudia Valls. Rational limit cycles of abel equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021007

[14]

Gernot Holler, Karl Kunisch. Learning nonlocal regularization operators. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021003

[15]

Wei-Chieh Chen, Bogdan Kazmierczak. Traveling waves in quadratic autocatalytic systems with complexing agent. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020364

[16]

Pablo Neme, Jorge Oviedo. A note on the lattice structure for matching markets via linear programming. Journal of Dynamics & Games, 2020  doi: 10.3934/jdg.2021001

[17]

Amira M. Boughoufala, Ahmed Y. Abdallah. Attractors for FitzHugh-Nagumo lattice systems with almost periodic nonlinear parts. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1549-1563. doi: 10.3934/dcdsb.2020172

[18]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[19]

Monia Capanna, Jean C. Nakasato, Marcone C. Pereira, Julio D. Rossi. Homogenization for nonlocal problems with smooth kernels. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020385

[20]

Xinfu Chen, Huiqiang Jiang, Guoqing Liu. Boundary spike of the singular limit of an energy minimizing problem. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3253-3290. doi: 10.3934/dcds.2020124

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (41)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]