April  2016, 36(4): 2047-2067. doi: 10.3934/dcds.2016.36.2047

KdV waves in atomic chains with nonlocal interactions

1. 

Westfälische Wilhelms-Universität Münster, Institut für Numerische und Angewandte Mathematik, Einsteinstraße 62, 48149 Münster, Germany

2. 

Technische Universität München, Zentrum Mathematik, Boltzmannstraße 3, 85747 Garching, Germany

Received  March 2015 Revised  June 2015 Published  September 2015

We consider atomic chains with nonlocal particle interactions and prove the existence of near-sonic solitary waves. Both our result and the general proof strategy are reminiscent of the seminal paper by Friesecke and Pego on the KdV limit of chains with nearest neighbor interactions but differ in the following two aspects: First, we allow for a wider class of atomic systems and must hence replace the distance profile by the velocity profile. Second, in the asymptotic analysis we avoid a detailed Fourier pole characterization of the nonlocal integral operators and employ the contraction mapping principle to solve the final fixed point problem.
Citation: Michael Herrmann, Alice Mikikits-Leitner. KdV waves in atomic chains with nonlocal interactions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 2047-2067. doi: 10.3934/dcds.2016.36.2047
References:
[1]

M. Chirilus-Bruckner, C. Chong, O. Prill and G. Schneider, Rigorous description of macroscopic wave packets in infinite periodic chains of coupled oscillators by modulation equations,, Discrete Contin. Dyn. Syst. Ser. S, 5 (2012), 879.  doi: 10.3934/dcdss.2012.5.879.  Google Scholar

[2]

G. Friesecke and A. Mikikits-Leitner, Cnoidal waves on Fermi-Pasta-Ulam lattices, 2014,, To appear in J. Dyn. Diff. Equat., ().   Google Scholar

[3]

G. Friesecke and R. L. Pego, Solitary waves on FPU lattices. I. Qualitative properties, renormalization and continuum limit,, Nonlinearity, 12 (1999), 1601.  doi: 10.1088/0951-7715/12/6/311.  Google Scholar

[4]

G. Friesecke and R. L. Pego, Solitary waves on FPU lattices. II. Linear implies nonlinear stability,, Nonlinearity, 15 (2002), 1343.  doi: 10.1088/0951-7715/15/4/317.  Google Scholar

[5]

G. Friesecke and R. L. Pego, Solitary waves on Fermi-Pasta-Ulam lattices. III. Howland-type Floquet theory,, Nonlinearity, 17 (2004), 207.  doi: 10.1088/0951-7715/17/1/013.  Google Scholar

[6]

G. Friesecke and R. L. Pego, Solitary waves on Fermi-Pasta-Ulam lattices. IV. Proof of stability at low energy,, Nonlinearity, 17 (2004), 229.  doi: 10.1088/0951-7715/17/1/014.  Google Scholar

[7]

J. Gaison, S. Moskow, J. D. Wright and Q. Zhang, Approximation of polyatomic FPU lattices by KdV equations,, Multiscale Model. Simul., 12 (2014), 953.  doi: 10.1137/130941638.  Google Scholar

[8]

M. Herrmann, Unimodal wavetrains and solitons in convex Fermi-Pasta-Ulam chains,, Proc. Roy. Soc. Edinburgh Sect. A, 140 (2010), 753.  doi: 10.1017/S0308210509000146.  Google Scholar

[9]

M. Herrmann, K. Matthies, H. Schwetlick and J. Zimmer, Subsonic phase transition waves in bistable lattice models with small spinodal region,, SIAM J. Math. Anal., 45 (2013), 2625.  doi: 10.1137/120877878.  Google Scholar

[10]

M. Herrmann and J. D. M. Rademacher, Heteroclinic travelling waves in convex FPU-type chains,, SIAM J. Math. Anal., 42 (2010), 1483.  doi: 10.1137/080743147.  Google Scholar

[11]

A. Hoffman and C. E. Wayne, Counter-propagating two-soliton solutions in the Fermi-Pasta-Ulam lattice,, Nonlinearity, 21 (2008), 2911.  doi: 10.1088/0951-7715/21/12/011.  Google Scholar

[12]

A. Hoffman and C. E. Wayne, Asymptotic two-soliton solutions in the Fermi-Pasta-Ulam model,, J. Dynam. Differential Equations, 21 (2009), 343.  doi: 10.1007/s10884-009-9134-9.  Google Scholar

[13]

A. Hoffman and C. E. Wayne, A simple proof of the stability of solitary waves in the Fermi-Pasta-Ulam model near the KdV limit,, in Infinite dimensional dynamical systems, (2013), 185.  doi: 10.1007/978-1-4614-4523-4_7.  Google Scholar

[14]

T. Mizumachi, $N$-soliton states of the Fermi-Pasta-Ulam lattices,, SIAM J. Math. Anal., 43 (2011), 2170.  doi: 10.1137/100792457.  Google Scholar

[15]

T. Mizumachi, Asymptotic stability of $N$-solitary waves of the FPU lattices,, Arch. Ration. Mech. Anal., 207 (2013), 393.  doi: 10.1007/s00205-012-0564-x.  Google Scholar

[16]

P. M. Morse and H. Feshbach, Methods of Theoretical Physics. 2 volumes,, McGraw-Hill Book Co., (1953).   Google Scholar

[17]

G. Schneider and C. E. Wayne, Counter-propagating waves on fluid surfaces and the continuum limit of the Fermi-Pasta-Ulam model,, in International Conference on Differential Equations, (1999), 390.   Google Scholar

[18]

N. J. Zabusky and M. D. Kruskal, Interaction of 'solitons' in a collisionless plasma and the recurrence of initial states,, Phys. Rev. Lett., 15 (1965), 240.  doi: 10.1103/PhysRevLett.15.240.  Google Scholar

show all references

References:
[1]

M. Chirilus-Bruckner, C. Chong, O. Prill and G. Schneider, Rigorous description of macroscopic wave packets in infinite periodic chains of coupled oscillators by modulation equations,, Discrete Contin. Dyn. Syst. Ser. S, 5 (2012), 879.  doi: 10.3934/dcdss.2012.5.879.  Google Scholar

[2]

G. Friesecke and A. Mikikits-Leitner, Cnoidal waves on Fermi-Pasta-Ulam lattices, 2014,, To appear in J. Dyn. Diff. Equat., ().   Google Scholar

[3]

G. Friesecke and R. L. Pego, Solitary waves on FPU lattices. I. Qualitative properties, renormalization and continuum limit,, Nonlinearity, 12 (1999), 1601.  doi: 10.1088/0951-7715/12/6/311.  Google Scholar

[4]

G. Friesecke and R. L. Pego, Solitary waves on FPU lattices. II. Linear implies nonlinear stability,, Nonlinearity, 15 (2002), 1343.  doi: 10.1088/0951-7715/15/4/317.  Google Scholar

[5]

G. Friesecke and R. L. Pego, Solitary waves on Fermi-Pasta-Ulam lattices. III. Howland-type Floquet theory,, Nonlinearity, 17 (2004), 207.  doi: 10.1088/0951-7715/17/1/013.  Google Scholar

[6]

G. Friesecke and R. L. Pego, Solitary waves on Fermi-Pasta-Ulam lattices. IV. Proof of stability at low energy,, Nonlinearity, 17 (2004), 229.  doi: 10.1088/0951-7715/17/1/014.  Google Scholar

[7]

J. Gaison, S. Moskow, J. D. Wright and Q. Zhang, Approximation of polyatomic FPU lattices by KdV equations,, Multiscale Model. Simul., 12 (2014), 953.  doi: 10.1137/130941638.  Google Scholar

[8]

M. Herrmann, Unimodal wavetrains and solitons in convex Fermi-Pasta-Ulam chains,, Proc. Roy. Soc. Edinburgh Sect. A, 140 (2010), 753.  doi: 10.1017/S0308210509000146.  Google Scholar

[9]

M. Herrmann, K. Matthies, H. Schwetlick and J. Zimmer, Subsonic phase transition waves in bistable lattice models with small spinodal region,, SIAM J. Math. Anal., 45 (2013), 2625.  doi: 10.1137/120877878.  Google Scholar

[10]

M. Herrmann and J. D. M. Rademacher, Heteroclinic travelling waves in convex FPU-type chains,, SIAM J. Math. Anal., 42 (2010), 1483.  doi: 10.1137/080743147.  Google Scholar

[11]

A. Hoffman and C. E. Wayne, Counter-propagating two-soliton solutions in the Fermi-Pasta-Ulam lattice,, Nonlinearity, 21 (2008), 2911.  doi: 10.1088/0951-7715/21/12/011.  Google Scholar

[12]

A. Hoffman and C. E. Wayne, Asymptotic two-soliton solutions in the Fermi-Pasta-Ulam model,, J. Dynam. Differential Equations, 21 (2009), 343.  doi: 10.1007/s10884-009-9134-9.  Google Scholar

[13]

A. Hoffman and C. E. Wayne, A simple proof of the stability of solitary waves in the Fermi-Pasta-Ulam model near the KdV limit,, in Infinite dimensional dynamical systems, (2013), 185.  doi: 10.1007/978-1-4614-4523-4_7.  Google Scholar

[14]

T. Mizumachi, $N$-soliton states of the Fermi-Pasta-Ulam lattices,, SIAM J. Math. Anal., 43 (2011), 2170.  doi: 10.1137/100792457.  Google Scholar

[15]

T. Mizumachi, Asymptotic stability of $N$-solitary waves of the FPU lattices,, Arch. Ration. Mech. Anal., 207 (2013), 393.  doi: 10.1007/s00205-012-0564-x.  Google Scholar

[16]

P. M. Morse and H. Feshbach, Methods of Theoretical Physics. 2 volumes,, McGraw-Hill Book Co., (1953).   Google Scholar

[17]

G. Schneider and C. E. Wayne, Counter-propagating waves on fluid surfaces and the continuum limit of the Fermi-Pasta-Ulam model,, in International Conference on Differential Equations, (1999), 390.   Google Scholar

[18]

N. J. Zabusky and M. D. Kruskal, Interaction of 'solitons' in a collisionless plasma and the recurrence of initial states,, Phys. Rev. Lett., 15 (1965), 240.  doi: 10.1103/PhysRevLett.15.240.  Google Scholar

[1]

Fanzhi Chen, Michael Herrmann. KdV-like solitary waves in two-dimensional FPU-lattices. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2305-2332. doi: 10.3934/dcds.2018095

[2]

Dmitry Treschev. Travelling waves in FPU lattices. Discrete & Continuous Dynamical Systems - A, 2004, 11 (4) : 867-880. doi: 10.3934/dcds.2004.11.867

[3]

Dashun Xu, Xiao-Qiang Zhao. Asymptotic speed of spread and traveling waves for a nonlocal epidemic model. Discrete & Continuous Dynamical Systems - B, 2005, 5 (4) : 1043-1056. doi: 10.3934/dcdsb.2005.5.1043

[4]

Qiang Du, Jingyan Zhang. Asymptotic analysis of a diffuse interface relaxation to a nonlocal optimal partition problem. Discrete & Continuous Dynamical Systems - A, 2011, 29 (4) : 1443-1461. doi: 10.3934/dcds.2011.29.1443

[5]

Dario Bambusi, D. Vella. Quasi periodic breathers in Hamiltonian lattices with symmetries. Discrete & Continuous Dynamical Systems - B, 2002, 2 (3) : 389-399. doi: 10.3934/dcdsb.2002.2.389

[6]

Nate Bottman, Bernard Deconinck. KdV cnoidal waves are spectrally stable. Discrete & Continuous Dynamical Systems - A, 2009, 25 (4) : 1163-1180. doi: 10.3934/dcds.2009.25.1163

[7]

Rui Huang, Ming Mei, Kaijun Zhang, Qifeng Zhang. Asymptotic stability of non-monotone traveling waves for time-delayed nonlocal dispersion equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1331-1353. doi: 10.3934/dcds.2016.36.1331

[8]

Fang-Di Dong, Wan-Tong Li, Jia-Bing Wang. Asymptotic behavior of traveling waves for a three-component system with nonlocal dispersal and its application. Discrete & Continuous Dynamical Systems - A, 2017, 37 (12) : 6291-6318. doi: 10.3934/dcds.2017272

[9]

Tomás Caraballo, Francisco Morillas, José Valero. Asymptotic behaviour of a logistic lattice system. Discrete & Continuous Dynamical Systems - A, 2014, 34 (10) : 4019-4037. doi: 10.3934/dcds.2014.34.4019

[10]

Kay Kirkpatrick. Rigorous derivation of the Landau equation in the weak coupling limit. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1895-1916. doi: 10.3934/cpaa.2009.8.1895

[11]

Elena Bonetti, Giovanna Bonfanti, Riccarda Rossi. Analysis of a model coupling volume and surface processes in thermoviscoelasticity. Discrete & Continuous Dynamical Systems - A, 2015, 35 (6) : 2349-2403. doi: 10.3934/dcds.2015.35.2349

[12]

Alejandro B. Aceves, Luis A. Cisneros-Ake, Antonmaria A. Minzoni. Asymptotics for supersonic traveling waves in the Morse lattice. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : 975-994. doi: 10.3934/dcdss.2011.4.975

[13]

Alexander Pankov, Vassilis M. Rothos. Traveling waves in Fermi-Pasta-Ulam lattices with saturable nonlinearities. Discrete & Continuous Dynamical Systems - A, 2011, 30 (3) : 835-849. doi: 10.3934/dcds.2011.30.835

[14]

Cheng Hou Tsang, Boris A. Malomed, Kwok Wing Chow. Exact solutions for periodic and solitary matter waves in nonlinear lattices. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : 1299-1325. doi: 10.3934/dcdss.2011.4.1299

[15]

Yuqian Zhou, Qian Liu. Reduction and bifurcation of traveling waves of the KdV-Burgers-Kuramoto equation. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 2057-2071. doi: 10.3934/dcdsb.2016036

[16]

Cynthia Ferreira, Guillaume James, Michel Peyrard. Nonlinear lattice models for biopolymers: Dynamical coupling to a ionic cloud and application to actin filaments. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : 1147-1166. doi: 10.3934/dcdss.2011.4.1147

[17]

Fang-Di Dong, Wan-Tong Li, Li Zhang. Entire solutions in a two-dimensional nonlocal lattice dynamical system. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2517-2545. doi: 10.3934/cpaa.2018120

[18]

Aaron Hoffman, Benjamin Kennedy. Existence and uniqueness of traveling waves in a class of unidirectional lattice differential equations. Discrete & Continuous Dynamical Systems - A, 2011, 30 (1) : 137-167. doi: 10.3934/dcds.2011.30.137

[19]

Gero Friesecke, Karsten Matthies. Geometric solitary waves in a 2D mass-spring lattice. Discrete & Continuous Dynamical Systems - B, 2003, 3 (1) : 105-144. doi: 10.3934/dcdsb.2003.3.105

[20]

Ahmed Y. Abdallah. Asymptotic behavior of the Klein-Gordon-Schrödinger lattice dynamical systems. Communications on Pure & Applied Analysis, 2006, 5 (1) : 55-69. doi: 10.3934/cpaa.2006.5.55

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (13)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]