April  2016, 36(4): 2085-2102. doi: 10.3934/dcds.2016.36.2085

Upper bounds for the attractor dimension of damped Navier-Stokes equations in $\mathbb R^2$

1. 

Keldysh Institute of Applied Mathematics, Moscow 125047, Russian Federation

2. 

University of Surrey, Department of Mathematics, Guildford, GU2 7XH, United Kingdom

3. 

Department of Mathematics, University of Surrey, Guildford, GU2 7XH

Received  March 2015 Revised  June 2015 Published  September 2015

We consider finite energy solutions for the damped and driven two-dimensional Navier--Stokes equations in the plane and show that the corresponding dynamical system possesses a global attractor. We obtain upper bounds for its fractal dimension when the forcing term belongs to the whole scale of homogeneous Sobolev spaces from $-1$ to $1$.
Citation: Alexei Ilyin, Kavita Patni, Sergey Zelik. Upper bounds for the attractor dimension of damped Navier-Stokes equations in $\mathbb R^2$. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 2085-2102. doi: 10.3934/dcds.2016.36.2085
References:
[1]

P. Anthony and S. Zelik, Infinite-energy solutions for the Navier-Stokes equations in a strip revisited,, Commun. Pure Appl. Anal., 13 (2014), 1361. doi: 10.3934/cpaa.2014.13.1361. Google Scholar

[2]

A. Babin, The attractor of a Navier-Stokes system in unbounded channel-like domain,, Jour. Dyn. Diff. Eqns., 4 (1992), 555. doi: 10.1007/BF01048260. Google Scholar

[3]

A. Babin and M. Vishik, Attractors of evolution partial differential equations and estimates of their dimension,, Uspekhi Mat. Nauk, 38 (1983), 133. Google Scholar

[4]

A. Babin and M. Vishik, Attractors of Evolution Equations,, Studies in Mathematics and its Applications, (1992). Google Scholar

[5]

J. Ball, Global attractors for damped semilinear wave equations. Partial differential equations and applications,, Discrete Contin. Dyn. Syst., 10 (2004), 31. doi: 10.3934/dcds.2004.10.31. Google Scholar

[6]

V. Barcilon, P. Constantin and E. S. Titi, Existence of solutions to the Stommel-Charney model of the gulf stream,, SIAM J. Math. Anal., 19 (1988), 1355. doi: 10.1137/0519099. Google Scholar

[7]

M. Bartuccelli, J. Deane and S. Zelik, Asymptotic expansions and extremals for the critical Sobolev and Gagliardo-Nirenberg inequalities on a torus,, Proc. Roy. Soc. Edinburgh Sect. A, 143 (2013), 445. doi: 10.1017/S0308210511000473. Google Scholar

[8]

V. Chepyzhov and A. Ilyin, On the fractal dimension of invariant sets: Applications to Navier-Stokes equations,, Discrete Contin. Dyn. Syst., 10 (2004), 117. Google Scholar

[9]

V. Chepyzhov and A. Ilyin, A note on the fractal dimension of attractors of dissipative dynamical systems,, Nonlinear Anal. Theory, 44 (2001), 811. doi: 10.1016/S0362-546X(99)00309-0. Google Scholar

[10]

V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics,, Providence, (2002). Google Scholar

[11]

V. Chepyzhov, M. Vishik and S. Zelik, Strong trajectory attractors for dissipative Euler equations,, J. Math. Pures Appl., 96 (2011), 395. doi: 10.1016/j.matpur.2011.04.007. Google Scholar

[12]

V. Chepyzhov and S. Zelik, Infinite energy solutions for dissipative Euler equations in $R^2$,, J. Math. Fluid Mech., 17 (2015), 513. doi: 10.1007/s00021-015-0213-x. Google Scholar

[13]

P. Constantin and C. Foias, Global Lyapunov exponents, Kaplan-Yorke formulas and the dimension of the attractors for the 2D Navier-Stokes equations,, Comm. Pure Appl. Math., 38 (1985), 1. doi: 10.1002/cpa.3160380102. Google Scholar

[14]

P. Constantin and C. Foias, Navier-Stokes Equations,, Univ. of Chicago Press, (1988). Google Scholar

[15]

P. Constantin, C. Foias and R. Temam, On the dimension of the attractors in two-dimensional turbulence,, Physica D, 30 (1988), 284. doi: 10.1016/0167-2789(88)90022-X. Google Scholar

[16]

P. Constantin and F. Ramos, Inviscid limit for damped and driven incompressible Navier-Stokes equations in $\mathbb R^2$,, Comm. Math. Phys., 275 (2007), 529. doi: 10.1007/s00220-007-0310-7. Google Scholar

[17]

C. Doering and J. Gibbon, Note on the Constantin-Foias-Temam attractor dimension estimate for two-dimensional turbulence,, Phys. D, 48 (1991), 471. doi: 10.1016/0167-2789(91)90098-T. Google Scholar

[18]

J. Dolbeault, A. Laptev and M. Loss, Lieb-Thirring inequalities with improved constants,, J. European Math. Soc., 10 (2008), 1121. doi: 10.4171/JEMS/142. Google Scholar

[19]

C. Foias, O. Manely, R. Rosa and R. Temam, Navier-Stokes Equations and Turbulence,, Cambridge Univ. Press, (2001). doi: 10.1017/CBO9780511546754. Google Scholar

[20]

Th. Gallay, Infinite energy solutions of the two-dimensional Navier-Stokes equations,, , (). Google Scholar

[21]

Th. Gallay and C. E. Wayne, Global stability of vortex solutions of the two-dimensional Navier-Stokes equation,, Comm. Math. Phys., 255 (2005), 97. doi: 10.1007/s00220-004-1254-9. Google Scholar

[22]

A. A. Ilyin, Euler equations with dissipation,, Mat. Sbornik, 182 (1991), 1729. Google Scholar

[23]

A. Ilyin, On the spectrum of the Stokes operator,, Funktsional. Anal. i Prilozhen, 43 (2009), 14. doi: 10.1007/s10688-009-0034-x. Google Scholar

[24]

A. Ilyin, A. Miranville and E. Titi, Small viscosity sharp estimate for the global attractor of the 2-D damped-driven Navier-Stokes equations,, Commun. Math. Sciences, 2 (2004), 403. doi: 10.4310/CMS.2004.v2.n3.a4. Google Scholar

[25]

A. A. Ilyin, Lieb-Thirring inequalities on some manifolds,, J. Spectr. Theory, 2 (2012), 57. doi: 10.4171/JST/21. Google Scholar

[26]

O. A. Ladyzhenskaya, Attractors for Semigroups and Evolution Equations,, Leizioni Lincei, (1991). doi: 10.1017/CBO9780511569418. Google Scholar

[27]

E. Lieb, On characteristic exponents in turbulence,, Comm. Math. Phys., 92 (1984), 473. doi: 10.1007/BF01215277. Google Scholar

[28]

V. X. Liu, A sharp lower bound for the Hausdorff dimension of the global attractors of the 2D Navier-Stokes equations,, Comm. Math. Phys., 158 (1993), 327. doi: 10.1007/BF02108078. Google Scholar

[29]

A. Miranville and S. Zelik, Attractors for dissipative partial differential equations in bounded and unbounded domains,, Handbook of differential equations: Evolutionary equations. Vol. IV, (2008), 103. doi: 10.1016/S1874-5717(08)00003-0. Google Scholar

[30]

I. Moise, R. Rosa and X. Wang, Attractors for non-compact semigroups via energy equations,, Nonlinearity, 11 (1998), 1369. doi: 10.1088/0951-7715/11/5/012. Google Scholar

[31]

J. Pedlosky, Geophysical Fluid Dynamics,, Springer, (1979). Google Scholar

[32]

J. Pennant, A finite dimensional global attractor for infinite energy solutions of the damped Navier-Stokes equations in $\mathbb R^2$,, submitted., (). Google Scholar

[33]

J. Robinson, Dimensions, Embeddings, and Attractors,, Cambridge Tracts in Mathematics, (2011). Google Scholar

[34]

R. Rosa, The global attractor for the 2D Navier-Stokes flow on some unbounded domains,, Nonlinear Anal., 32 (1998), 71. doi: 10.1016/S0362-546X(97)00453-7. Google Scholar

[35]

M. Schonbek, Large time behaviour of solutions to the Navier-Stokes equations,, Comm. Partial Differential Equations, 11 (1986), 733. doi: 10.1080/03605308608820443. Google Scholar

[36]

G. R. Sell and Y. You, Dynamics of Evolutionary Equations,, Springer-Verlag, (2002). doi: 10.1007/978-1-4757-5037-9. Google Scholar

[37]

R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics,, 2nd ed. Springer-Verlag, (1997). doi: 10.1007/978-1-4612-0645-3. Google Scholar

[38]

R. Temam, Navier-Stokes Equations, Theory and Numerical Analysis,, North-Holland, (1977). Google Scholar

[39]

H. Triebel, Interpolation Theory, Function Spaces, Differential Operators,, Second edition. Johann Ambrosius Barth, (1995). Google Scholar

[40]

M. Wiegner, Decay results for weak solutions of the Navier-Stokes equations on $R^n$,, J. London Math. Soc., 35 (1987), 303. doi: 10.1112/jlms/s2-35.2.303. Google Scholar

[41]

G. Wolansky, Existence, uniqueness, and stability of stationary barotropic flow with forcing and dissipation,, Comm. Pure Appl. Math., 41 (1988), 19. doi: 10.1002/cpa.3160410104. Google Scholar

[42]

S. Zelik, Spatially nondecaying solutions of the 2D Navier-Stokes equation in a strip,, Glasg. Math. J., 49 (2007), 525. doi: 10.1017/S0017089507003849. Google Scholar

[43]

S. Zelik, Infinite energy solutions for damped Navier-Stokes equations in $\mathbbR^2$,, J. Math. Fluid Mech., 15 (2013), 717. doi: 10.1007/s00021-013-0144-3. Google Scholar

show all references

References:
[1]

P. Anthony and S. Zelik, Infinite-energy solutions for the Navier-Stokes equations in a strip revisited,, Commun. Pure Appl. Anal., 13 (2014), 1361. doi: 10.3934/cpaa.2014.13.1361. Google Scholar

[2]

A. Babin, The attractor of a Navier-Stokes system in unbounded channel-like domain,, Jour. Dyn. Diff. Eqns., 4 (1992), 555. doi: 10.1007/BF01048260. Google Scholar

[3]

A. Babin and M. Vishik, Attractors of evolution partial differential equations and estimates of their dimension,, Uspekhi Mat. Nauk, 38 (1983), 133. Google Scholar

[4]

A. Babin and M. Vishik, Attractors of Evolution Equations,, Studies in Mathematics and its Applications, (1992). Google Scholar

[5]

J. Ball, Global attractors for damped semilinear wave equations. Partial differential equations and applications,, Discrete Contin. Dyn. Syst., 10 (2004), 31. doi: 10.3934/dcds.2004.10.31. Google Scholar

[6]

V. Barcilon, P. Constantin and E. S. Titi, Existence of solutions to the Stommel-Charney model of the gulf stream,, SIAM J. Math. Anal., 19 (1988), 1355. doi: 10.1137/0519099. Google Scholar

[7]

M. Bartuccelli, J. Deane and S. Zelik, Asymptotic expansions and extremals for the critical Sobolev and Gagliardo-Nirenberg inequalities on a torus,, Proc. Roy. Soc. Edinburgh Sect. A, 143 (2013), 445. doi: 10.1017/S0308210511000473. Google Scholar

[8]

V. Chepyzhov and A. Ilyin, On the fractal dimension of invariant sets: Applications to Navier-Stokes equations,, Discrete Contin. Dyn. Syst., 10 (2004), 117. Google Scholar

[9]

V. Chepyzhov and A. Ilyin, A note on the fractal dimension of attractors of dissipative dynamical systems,, Nonlinear Anal. Theory, 44 (2001), 811. doi: 10.1016/S0362-546X(99)00309-0. Google Scholar

[10]

V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics,, Providence, (2002). Google Scholar

[11]

V. Chepyzhov, M. Vishik and S. Zelik, Strong trajectory attractors for dissipative Euler equations,, J. Math. Pures Appl., 96 (2011), 395. doi: 10.1016/j.matpur.2011.04.007. Google Scholar

[12]

V. Chepyzhov and S. Zelik, Infinite energy solutions for dissipative Euler equations in $R^2$,, J. Math. Fluid Mech., 17 (2015), 513. doi: 10.1007/s00021-015-0213-x. Google Scholar

[13]

P. Constantin and C. Foias, Global Lyapunov exponents, Kaplan-Yorke formulas and the dimension of the attractors for the 2D Navier-Stokes equations,, Comm. Pure Appl. Math., 38 (1985), 1. doi: 10.1002/cpa.3160380102. Google Scholar

[14]

P. Constantin and C. Foias, Navier-Stokes Equations,, Univ. of Chicago Press, (1988). Google Scholar

[15]

P. Constantin, C. Foias and R. Temam, On the dimension of the attractors in two-dimensional turbulence,, Physica D, 30 (1988), 284. doi: 10.1016/0167-2789(88)90022-X. Google Scholar

[16]

P. Constantin and F. Ramos, Inviscid limit for damped and driven incompressible Navier-Stokes equations in $\mathbb R^2$,, Comm. Math. Phys., 275 (2007), 529. doi: 10.1007/s00220-007-0310-7. Google Scholar

[17]

C. Doering and J. Gibbon, Note on the Constantin-Foias-Temam attractor dimension estimate for two-dimensional turbulence,, Phys. D, 48 (1991), 471. doi: 10.1016/0167-2789(91)90098-T. Google Scholar

[18]

J. Dolbeault, A. Laptev and M. Loss, Lieb-Thirring inequalities with improved constants,, J. European Math. Soc., 10 (2008), 1121. doi: 10.4171/JEMS/142. Google Scholar

[19]

C. Foias, O. Manely, R. Rosa and R. Temam, Navier-Stokes Equations and Turbulence,, Cambridge Univ. Press, (2001). doi: 10.1017/CBO9780511546754. Google Scholar

[20]

Th. Gallay, Infinite energy solutions of the two-dimensional Navier-Stokes equations,, , (). Google Scholar

[21]

Th. Gallay and C. E. Wayne, Global stability of vortex solutions of the two-dimensional Navier-Stokes equation,, Comm. Math. Phys., 255 (2005), 97. doi: 10.1007/s00220-004-1254-9. Google Scholar

[22]

A. A. Ilyin, Euler equations with dissipation,, Mat. Sbornik, 182 (1991), 1729. Google Scholar

[23]

A. Ilyin, On the spectrum of the Stokes operator,, Funktsional. Anal. i Prilozhen, 43 (2009), 14. doi: 10.1007/s10688-009-0034-x. Google Scholar

[24]

A. Ilyin, A. Miranville and E. Titi, Small viscosity sharp estimate for the global attractor of the 2-D damped-driven Navier-Stokes equations,, Commun. Math. Sciences, 2 (2004), 403. doi: 10.4310/CMS.2004.v2.n3.a4. Google Scholar

[25]

A. A. Ilyin, Lieb-Thirring inequalities on some manifolds,, J. Spectr. Theory, 2 (2012), 57. doi: 10.4171/JST/21. Google Scholar

[26]

O. A. Ladyzhenskaya, Attractors for Semigroups and Evolution Equations,, Leizioni Lincei, (1991). doi: 10.1017/CBO9780511569418. Google Scholar

[27]

E. Lieb, On characteristic exponents in turbulence,, Comm. Math. Phys., 92 (1984), 473. doi: 10.1007/BF01215277. Google Scholar

[28]

V. X. Liu, A sharp lower bound for the Hausdorff dimension of the global attractors of the 2D Navier-Stokes equations,, Comm. Math. Phys., 158 (1993), 327. doi: 10.1007/BF02108078. Google Scholar

[29]

A. Miranville and S. Zelik, Attractors for dissipative partial differential equations in bounded and unbounded domains,, Handbook of differential equations: Evolutionary equations. Vol. IV, (2008), 103. doi: 10.1016/S1874-5717(08)00003-0. Google Scholar

[30]

I. Moise, R. Rosa and X. Wang, Attractors for non-compact semigroups via energy equations,, Nonlinearity, 11 (1998), 1369. doi: 10.1088/0951-7715/11/5/012. Google Scholar

[31]

J. Pedlosky, Geophysical Fluid Dynamics,, Springer, (1979). Google Scholar

[32]

J. Pennant, A finite dimensional global attractor for infinite energy solutions of the damped Navier-Stokes equations in $\mathbb R^2$,, submitted., (). Google Scholar

[33]

J. Robinson, Dimensions, Embeddings, and Attractors,, Cambridge Tracts in Mathematics, (2011). Google Scholar

[34]

R. Rosa, The global attractor for the 2D Navier-Stokes flow on some unbounded domains,, Nonlinear Anal., 32 (1998), 71. doi: 10.1016/S0362-546X(97)00453-7. Google Scholar

[35]

M. Schonbek, Large time behaviour of solutions to the Navier-Stokes equations,, Comm. Partial Differential Equations, 11 (1986), 733. doi: 10.1080/03605308608820443. Google Scholar

[36]

G. R. Sell and Y. You, Dynamics of Evolutionary Equations,, Springer-Verlag, (2002). doi: 10.1007/978-1-4757-5037-9. Google Scholar

[37]

R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics,, 2nd ed. Springer-Verlag, (1997). doi: 10.1007/978-1-4612-0645-3. Google Scholar

[38]

R. Temam, Navier-Stokes Equations, Theory and Numerical Analysis,, North-Holland, (1977). Google Scholar

[39]

H. Triebel, Interpolation Theory, Function Spaces, Differential Operators,, Second edition. Johann Ambrosius Barth, (1995). Google Scholar

[40]

M. Wiegner, Decay results for weak solutions of the Navier-Stokes equations on $R^n$,, J. London Math. Soc., 35 (1987), 303. doi: 10.1112/jlms/s2-35.2.303. Google Scholar

[41]

G. Wolansky, Existence, uniqueness, and stability of stationary barotropic flow with forcing and dissipation,, Comm. Pure Appl. Math., 41 (1988), 19. doi: 10.1002/cpa.3160410104. Google Scholar

[42]

S. Zelik, Spatially nondecaying solutions of the 2D Navier-Stokes equation in a strip,, Glasg. Math. J., 49 (2007), 525. doi: 10.1017/S0017089507003849. Google Scholar

[43]

S. Zelik, Infinite energy solutions for damped Navier-Stokes equations in $\mathbbR^2$,, J. Math. Fluid Mech., 15 (2013), 717. doi: 10.1007/s00021-013-0144-3. Google Scholar

[1]

Xue-Li Song, Yan-Ren Hou. Attractors for the three-dimensional incompressible Navier-Stokes equations with damping. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 239-252. doi: 10.3934/dcds.2011.31.239

[2]

Reinhard Farwig, Yasushi Taniuchi. Uniqueness of backward asymptotically almost periodic-in-time solutions to Navier-Stokes equations in unbounded domains. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1215-1224. doi: 10.3934/dcdss.2013.6.1215

[3]

Daniel Pardo, José Valero, Ángel Giménez. Global attractors for weak solutions of the three-dimensional Navier-Stokes equations with damping. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3569-3590. doi: 10.3934/dcdsb.2018279

[4]

Fang Li, Bo You. Pullback exponential attractors for the three dimensional non-autonomous Navier-Stokes equations with nonlinear damping. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 55-80. doi: 10.3934/dcdsb.2019172

[5]

Siegfried Maier, Jürgen Saal. Stokes and Navier-Stokes equations with perfect slip on wedge type domains. Discrete & Continuous Dynamical Systems - S, 2014, 7 (5) : 1045-1063. doi: 10.3934/dcdss.2014.7.1045

[6]

Daoyuan Fang, Ting Zhang. Compressible Navier-Stokes equations with vacuum state in one dimension. Communications on Pure & Applied Analysis, 2004, 3 (4) : 675-694. doi: 10.3934/cpaa.2004.3.675

[7]

V. V. Chepyzhov, A. A. Ilyin. On the fractal dimension of invariant sets: Applications to Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 117-135. doi: 10.3934/dcds.2004.10.117

[8]

Alain Miranville, Xiaoming Wang. Upper bound on the dimension of the attractor for nonhomogeneous Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 1996, 2 (1) : 95-110. doi: 10.3934/dcds.1996.2.95

[9]

Sylvie Monniaux. Various boundary conditions for Navier-Stokes equations in bounded Lipschitz domains. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1355-1369. doi: 10.3934/dcdss.2013.6.1355

[10]

Donatella Donatelli, Eduard Feireisl, Antonín Novotný. On incompressible limits for the Navier-Stokes system on unbounded domains under slip boundary conditions. Discrete & Continuous Dynamical Systems - B, 2010, 13 (4) : 783-798. doi: 10.3934/dcdsb.2010.13.783

[11]

Reinhard Farwig, Paul Felix Riechwald. Regularity criteria for weak solutions of the Navier-Stokes system in general unbounded domains. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 157-172. doi: 10.3934/dcdss.2016.9.157

[12]

Pedro Marín-Rubio, Antonio M. Márquez-Durán, José Real. Pullback attractors for globally modified Navier-Stokes equations with infinite delays. Discrete & Continuous Dynamical Systems - A, 2011, 31 (3) : 779-796. doi: 10.3934/dcds.2011.31.779

[13]

Fang Li, Bo You, Yao Xu. Dynamics of weak solutions for the three dimensional Navier-Stokes equations with nonlinear damping. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4267-4284. doi: 10.3934/dcdsb.2018137

[14]

Pavel I. Plotnikov, Jan Sokolowski. Compressible Navier-Stokes equations. Conference Publications, 2009, 2009 (Special) : 602-611. doi: 10.3934/proc.2009.2009.602

[15]

Jan W. Cholewa, Tomasz Dlotko. Fractional Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 2967-2988. doi: 10.3934/dcdsb.2017149

[16]

Bixiang Wang, Xiaoling Gao. Random attractors for wave equations on unbounded domains. Conference Publications, 2009, 2009 (Special) : 800-809. doi: 10.3934/proc.2009.2009.800

[17]

Yutaka Tsuzuki. Solvability of $p$-Laplacian parabolic logistic equations with constraints coupled with Navier-Stokes equations in 2D domains. Evolution Equations & Control Theory, 2014, 3 (1) : 191-206. doi: 10.3934/eect.2014.3.191

[18]

Daniel Coutand, J. Peirce, Steve Shkoller. Global well-posedness of weak solutions for the Lagrangian averaged Navier-Stokes equations on bounded domains. Communications on Pure & Applied Analysis, 2002, 1 (1) : 35-50. doi: 10.3934/cpaa.2002.1.35

[19]

Michele Campiti, Giovanni P. Galdi, Matthias Hieber. Global existence of strong solutions for $2$-dimensional Navier-Stokes equations on exterior domains with growing data at infinity. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1613-1627. doi: 10.3934/cpaa.2014.13.1613

[20]

Michal Beneš. Mixed initial-boundary value problem for the three-dimensional Navier-Stokes equations in polyhedral domains. Conference Publications, 2011, 2011 (Special) : 135-144. doi: 10.3934/proc.2011.2011.135

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (11)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]