-
Previous Article
Limit value for optimal control with general means
- DCDS Home
- This Issue
-
Next Article
Upper bounds for the attractor dimension of damped Navier-Stokes equations in $\mathbb R^2$
Quartic Julia sets including any two copies of quadratic Julia sets
1. | National Institute of Technology, Ichinoseki College, Takanashi, Hagisho, Ichinoseki, Iwate 021-8511, Japan |
References:
[1] |
P. Blanchard, Disconnected Julia sets, chaotic dynamics and fractals, Notes Rep. Math. Sci. Engrg., Academic Press, Orlando, FL, 2 (1986), 181-201. |
[2] |
A. Douady and J. Hubbard, On the dynamics of polynomial-like mappings, Ann. Sci. Éc. Norm. Sup. (4), 18 (1985), 287-343. |
[3] |
K. Katagata, On a certain kind of polynomials of degree 4 with disconnected Julia set, Discrete Contin. Dyn. Syst. , 20 (2008), 975-987.
doi: 10.3934/dcds.2008.20.975. |
[4] |
M. Kisaka and M. Shishikura, On multiply connected wandering domains of entire functions, Transcendental dynamics and complex analysis, London Math. Soc. Lecture Note Ser. Cambridge Univ. Press, Cambridge, 348 (2008), 217-250.
doi: 10.1017/CBO9780511735233.012. |
[5] |
S. Morosawa, Y. Nishimura, M. Taniguchi and T. Ueda, Holomorphic Dynamics, Cambridge Studies in Advanced Mathematics, 66. Cambridge University Press, Cambridge, 2000. |
show all references
References:
[1] |
P. Blanchard, Disconnected Julia sets, chaotic dynamics and fractals, Notes Rep. Math. Sci. Engrg., Academic Press, Orlando, FL, 2 (1986), 181-201. |
[2] |
A. Douady and J. Hubbard, On the dynamics of polynomial-like mappings, Ann. Sci. Éc. Norm. Sup. (4), 18 (1985), 287-343. |
[3] |
K. Katagata, On a certain kind of polynomials of degree 4 with disconnected Julia set, Discrete Contin. Dyn. Syst. , 20 (2008), 975-987.
doi: 10.3934/dcds.2008.20.975. |
[4] |
M. Kisaka and M. Shishikura, On multiply connected wandering domains of entire functions, Transcendental dynamics and complex analysis, London Math. Soc. Lecture Note Ser. Cambridge Univ. Press, Cambridge, 348 (2008), 217-250.
doi: 10.1017/CBO9780511735233.012. |
[5] |
S. Morosawa, Y. Nishimura, M. Taniguchi and T. Ueda, Holomorphic Dynamics, Cambridge Studies in Advanced Mathematics, 66. Cambridge University Press, Cambridge, 2000. |
[1] |
Tien-Cuong Dinh, Nessim Sibony. Rigidity of Julia sets for Hénon type maps. Journal of Modern Dynamics, 2014, 8 (3&4) : 499-548. doi: 10.3934/jmd.2014.8.499 |
[2] |
Weiyuan Qiu, Fei Yang, Yongcheng Yin. Quasisymmetric geometry of the Cantor circles as the Julia sets of rational maps. Discrete and Continuous Dynamical Systems, 2016, 36 (6) : 3375-3416. doi: 10.3934/dcds.2016.36.3375 |
[3] |
Youming Wang, Fei Yang, Song Zhang, Liangwen Liao. Escape quartered theorem and the connectivity of the Julia sets of a family of rational maps. Discrete and Continuous Dynamical Systems, 2019, 39 (9) : 5185-5206. doi: 10.3934/dcds.2019211 |
[4] |
Jun Hu, Oleg Muzician, Yingqing Xiao. Dynamics of regularly ramified rational maps: Ⅰ. Julia sets of maps in one-parameter families. Discrete and Continuous Dynamical Systems, 2018, 38 (7) : 3189-3221. doi: 10.3934/dcds.2018139 |
[5] |
Luiz Henrique de Figueiredo, Diego Nehab, Jorge Stolfi, João Batista S. de Oliveira. Rigorous bounds for polynomial Julia sets. Journal of Computational Dynamics, 2016, 3 (2) : 113-137. doi: 10.3934/jcd.2016006 |
[6] |
Koh Katagata. Transcendental entire functions whose Julia sets contain any infinite collection of quasiconformal copies of quadratic Julia sets. Discrete and Continuous Dynamical Systems, 2019, 39 (9) : 5319-5337. doi: 10.3934/dcds.2019217 |
[7] |
Michał Misiurewicz, Sonja Štimac. Lozi-like maps. Discrete and Continuous Dynamical Systems, 2018, 38 (6) : 2965-2985. doi: 10.3934/dcds.2018127 |
[8] |
S. R. Bullett and W. J. Harvey. Mating quadratic maps with Kleinian groups via quasiconformal surgery. Electronic Research Announcements, 2000, 6: 21-30. |
[9] |
Xu Zhang, Guanrong Chen. Polynomial maps with hidden complex dynamics. Discrete and Continuous Dynamical Systems - B, 2019, 24 (6) : 2941-2954. doi: 10.3934/dcdsb.2018293 |
[10] |
Christopher Cleveland. Rotation sets for unimodal maps of the interval. Discrete and Continuous Dynamical Systems, 2003, 9 (3) : 617-632. doi: 10.3934/dcds.2003.9.617 |
[11] |
Evelyn Sander. Hyperbolic sets for noninvertible maps and relations. Discrete and Continuous Dynamical Systems, 1999, 5 (2) : 339-357. doi: 10.3934/dcds.1999.5.339 |
[12] |
Boju Jiang, Jaume Llibre. Minimal sets of periods for torus maps. Discrete and Continuous Dynamical Systems, 1998, 4 (2) : 301-320. doi: 10.3934/dcds.1998.4.301 |
[13] |
Hiroki Sumi. Dynamics of postcritically bounded polynomial semigroups I: Connected components of the Julia sets. Discrete and Continuous Dynamical Systems, 2011, 29 (3) : 1205-1244. doi: 10.3934/dcds.2011.29.1205 |
[14] |
Héctor E. Lomelí. Heteroclinic orbits and rotation sets for twist maps. Discrete and Continuous Dynamical Systems, 2006, 14 (2) : 343-354. doi: 10.3934/dcds.2006.14.343 |
[15] |
Song Shao, Xiangdong Ye. Non-wandering sets of the powers of maps of a star. Discrete and Continuous Dynamical Systems, 2003, 9 (5) : 1175-1184. doi: 10.3934/dcds.2003.9.1175 |
[16] |
Bruce Kitchens, Michał Misiurewicz. Omega-limit sets for spiral maps. Discrete and Continuous Dynamical Systems, 2010, 27 (2) : 787-798. doi: 10.3934/dcds.2010.27.787 |
[17] |
Magdalena Foryś-Krawiec, Jana Hantáková, Piotr Oprocha. On the structure of α-limit sets of backward trajectories for graph maps. Discrete and Continuous Dynamical Systems, 2022, 42 (3) : 1435-1463. doi: 10.3934/dcds.2021159 |
[18] |
Youngna Choi. Attractors from one dimensional Lorenz-like maps. Discrete and Continuous Dynamical Systems, 2004, 11 (2&3) : 715-730. doi: 10.3934/dcds.2004.11.715 |
[19] |
Marina Gonchenko, Sergey Gonchenko, Klim Safonov. Reversible perturbations of conservative Hénon-like maps. Discrete and Continuous Dynamical Systems, 2021, 41 (4) : 1875-1895. doi: 10.3934/dcds.2020343 |
[20] |
Can Gao, Joachim Krieger. Optimal polynomial blow up range for critical wave maps. Communications on Pure and Applied Analysis, 2015, 14 (5) : 1705-1741. doi: 10.3934/cpaa.2015.14.1705 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]