April  2016, 36(4): 2133-2170. doi: 10.3934/dcds.2016.36.2133

Stability analysis of reaction-diffusion models on evolving domains: The effects of cross-diffusion

1. 

University of Sussex, School of Mathematical and Physical Sciences, Pevensey III, 5C15, Brighton, BN1 9QH

2. 

School of Mathematical and Physical Sciences, Department of Mathematics, University of Sussex, Falmer, Brighton, BN1 9QH, England, United Kingdom

3. 

Polytechnic Institute of Setubal, Barreiro School of Technology, Rua Américo da Silva Marinho-Lavradio, 2839-001 Barreiro, Portugal

Received  January 2015 Revised  August 2015 Published  September 2015

This article presents stability analytical results of a two component reaction-diffusion system with linear cross-diffusion posed on continuously evolving domains. First the model system is mapped from a continuously evolving domain to a reference stationary frame resulting in a system of partial differential equations with time-dependent coefficients. Second, by employing appropriately asymptotic theory, we derive and prove cross-diffusion-driven instability conditions for the model system for the case of slow, isotropic domain growth. Our analytical results reveal that unlike the restrictive diffusion-driven instability conditions on stationary domains, in the presence of cross-diffusion coupled with domain evolution, it is no longer necessary to enforce cross nor pure kinetic conditions. The restriction to activator-inhibitor kinetics to induce pattern formation on a growing biological system is no longer a requirement. Reaction-cross-diffusion models with equal diffusion coefficients in the principal components as well as those of the short-range inhibition, long-range activation and activator-activator form can generate patterns only in the presence of cross-diffusion coupled with domain evolution. To confirm our theoretical findings, detailed parameter spaces are exhibited for the special cases of isotropic exponential, linear and logistic growth profiles. In support of our theoretical predictions, we present evolving or moving finite element solutions exhibiting patterns generated by a short-range inhibition, long-range activation reaction-diffusion model with linear cross-diffusion in the presence of domain evolution.
Citation: Anotida Madzvamuse, Hussaini Ndakwo, Raquel Barreira. Stability analysis of reaction-diffusion models on evolving domains: The effects of cross-diffusion. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 2133-2170. doi: 10.3934/dcds.2016.36.2133
References:
[1]

D. Acheson, Elementary Fluid Dynamics,, Oxford University Press, (1990).   Google Scholar

[2]

M. Baines, Moving Finite Elements,, Oxford University Press, (1994).   Google Scholar

[3]

J. Bard and I. Lauder, How well does Turing's Theory of morphogenesis work?,, J. Theor. Bio., 45 (1974), 501.  doi: 10.1016/0022-5193(74)90128-3.  Google Scholar

[4]

R. Barreira, C. M. Elliott and A. Madzvamuse, The surface finite element method for pattern formation on evolving biological surfaces,, J. Math. Bio., 63 (2011), 1095.  doi: 10.1007/s00285-011-0401-0.  Google Scholar

[5]

V. Capasso and D. Liddo, Asymptotic behaviour of reaction-diffusion systems in population and epidemic models. The role of cross-diffusion,, J. Math. Biol., 32 (1994), 453.  doi: 10.1007/BF00160168.  Google Scholar

[6]

V. Capasso and D. Liddo, Global attractivity for reaction-diffusion systems. The case of nondiagonal diffusion matrices,, J. Math. Anal. and App., 177 (1993), 510.  doi: 10.1006/jmaa.1993.1274.  Google Scholar

[7]

E. J. Crampin, W. W. Hackborn and P. K. Maini, Pattern formation in reaction-diffusion models with nonuniform domain growth,, Bull. Math. Biol., 64 (2002), 747.  doi: 10.1006/bulm.2002.0295.  Google Scholar

[8]

G. Gambino, M. C. Lombardo and M. Sammartino, Turing instability and traveling fronts for nonlinear reaction-diffusion system with cross-diffusion,, Maths. Comp. in Sim., 82 (2012), 1112.  doi: 10.1016/j.matcom.2011.11.004.  Google Scholar

[9]

G. Gambino, M. C. Lombardo and M. Sammartino, Pattern formation driven by cross-diffusion in 2-D domain,, Non. Anal. Real World Applications, 14 (2013), 1755.  doi: 10.1016/j.nonrwa.2012.11.009.  Google Scholar

[10]

A. Gierer and H. Meinhardt, A theory of biological pattern formation,, Kybernetik, 12 (1972), 30.  doi: 10.1007/BF00289234.  Google Scholar

[11]

G. Hetzer, A. Madzvamuse and W. Shen, Characterization of Turing diffusion-driven instability on evolving domains,, Disc. Con. Dyn. Sys., 32 (2012), 3975.  doi: 10.3934/dcds.2012.32.3975.  Google Scholar

[12]

M. Iida and M. Mimura, Diffusion, cross-diffusion an competitive interaction,, J. Math. Biol., 53 (2006), 617.  doi: 10.1007/s00285-006-0013-2.  Google Scholar

[13]

K. Korvasova, E. A. Gaffney, M. P. Maini, M. A. Ferreira and V. Klika, Investigating the Turing conditions for diffusion-driven instability in the presence of binding immobile substrate,, J. Theor. Biol., 367 (2015), 286.  doi: 10.1016/j.jtbi.2014.11.024.  Google Scholar

[14]

S. Kovács, Turing bifurcation in a system with cross-diffusion,, Nonlinear Analysis, 59 (2004), 567.  doi: 10.1016/S0362-546X(04)00273-1.  Google Scholar

[15]

O. Lakkis, A. Madzvamuse and C. Venkataraman, Implicit-explicit timestepping with finite element approximation of reaction-diffusion systems on evolving domains,, SIAM JNA, 51 (2013), 2309.  doi: 10.1137/120880112.  Google Scholar

[16]

C. B. Macdonald, B. Merriman and S. J. Ruuth, Simple computation of reaction- diffusion processes on point clouds,, Proc. Nat. Acad. Sci. USA., 110 (2013), 9209.  doi: 10.1073/pnas.1221408110.  Google Scholar

[17]

C. B. Macdonald and S. J. Ruuth, The implicit closest point method for the numerical solution of partial differential equations on surfaces,, SIAM J. Sci. Comput., 31 (2010), 4330.  doi: 10.1137/080740003.  Google Scholar

[18]

A. Madzvamuse, R. D. K. Thomas, P. K. Maini and A. J. Wathen, A numerical approach to the study of spatial pattern formation in the ligaments of arcoid bivalves,, Bulletin of Mathematical Biology, 64 (2002), 501.  doi: 10.1006/bulm.2002.0283.  Google Scholar

[19]

A. Madzvamuse, P. K. Maini and A. J. Wathen, A moving grid finite element method applied to a model biological pattern generator,, J. Comp. Phys., 190 (2003), 478.  doi: 10.1016/S0021-9991(03)00294-8.  Google Scholar

[20]

A. Madzvamuse, A. J. Wathen and P. K. Maini, A moving grid finite element method for the simulation of pattern generation by Turing models on growing domains,, J. Sci. Comp., 24 (2005), 247.  doi: 10.1007/s10915-004-4617-7.  Google Scholar

[21]

A. Madzvamuse, Time-stepping schemes for moving grid finite elements applied to reaction-diffusion systems on fixed and growing domains,, J. Sci. Phys., 214 (2006), 239.  doi: 10.1016/j.jcp.2005.09.012.  Google Scholar

[22]

A. Madzvamuse and M. K. Maini, Velocity-induced numerical solutions of reaction-diffusion systems on fixed and growing domains,, J. Comp. Phys., 225 (2007), 100.  doi: 10.1016/j.jcp.2006.11.022.  Google Scholar

[23]

A. Madzvamuse, Diffusion-driven instability for growing domains with divergence free mesh velocity,, Nonlinear Analysis: Theory, 17 (2009).   Google Scholar

[24]

A. Madzvamuse, E. A. Gaffney and M. K. Maini, Stability analysis of non-autonomous reaction-diffusion systems: the effects of growing domains,, J. Math. Biol., 61 (2010), 133.  doi: 10.1007/s00285-009-0293-4.  Google Scholar

[25]

A. Madzvamuse and R. Barreira, Exhibiting cross-diffusion-induced patterns for reaction-diffusion systems on evolving domains and surfaces,, Physical Review E, 90 (2014).  doi: 10.1103/PhysRevE.90.043307.  Google Scholar

[26]

A. Madzvamuse, H. S. Ndakwo and R. Barreira, Cross-diffusion-driven instability for reaction-diffusion systems: Analysis and simulations,, Journal of Math. Bio., 70 (2015), 709.  doi: 10.1007/s00285-014-0779-6.  Google Scholar

[27]

P. K. Maini, E. J. Crampin, A. Madzvamuse, A. J. Wathen and R. D. K. Thomas, Implications of domain growth in morphogenesis,, in Mathematical Modelling and Computing in Biology and Medicine, 1 (2003), 67.   Google Scholar

[28]

M. S. McAfree and O. Annunziata, Cross-diffusion in a colloid-polymer aqueous system,, Fluid Phase Equilibria, 356 (2013), 46.   Google Scholar

[29]

C. C. McCluskey, A strategy for constructing Lyapunov functions for non-autonomous linear differential equations,, Linear Algebra and its Applications, 409 (2005), 100.  doi: 10.1016/j.laa.2005.04.006.  Google Scholar

[30]

J. D. Murray, Mathematical Biology. II,, Volume 18 of Interdisciplinary Applied Mathematics. Springer-Verlag, (2003).   Google Scholar

[31]

R. G. Plaza, F. Sánchez-Garduño, P. Padilla, R. A. Barrio and P. K. Maini, The effect of growth and curvature on pattern formation,, J. Dynam. and Diff. Eqs., 16 (2004), 1093.  doi: 10.1007/s10884-004-7834-8.  Google Scholar

[32]

I. Prigogine and R. Lefever, Symmetry breaking instabilities in dissipative systems. II,, J. Chem. Phys., 48 (1968), 1695.  doi: 10.1063/1.1668896.  Google Scholar

[33]

F. Rossi, V. K. Vanag, E. Tiezzi and I. R. Epstein, Quaternary cross-diffusion in water-in-oil microemulsions loaded with a component of the Belousov-Zhabotinsky reaction,, J. Phys. Chem. B, 114 (2010), 8140.  doi: 10.1021/jp102753b.  Google Scholar

[34]

R. Ruiz-Baier and C. Tian, Mathematical analysis and numerical simulation of pattern formation under cross-diffusion,, Non. Anal. Real World Applications, 14 (2013), 601.  doi: 10.1016/j.nonrwa.2012.07.020.  Google Scholar

[35]

J. Schnakenberg, Simple chemical reaction systems with limit cycle behaviour,, J. Theor. Biol., 81 (1979), 389.  doi: 10.1016/0022-5193(79)90042-0.  Google Scholar

[36]

L. Z. Tian and M. Pedersen, Instability induced by cross-diffusion in reaction-diffusion systems,, Non. Anal.: Real World Applications, 11 (2010), 1036.  doi: 10.1016/j.nonrwa.2009.01.043.  Google Scholar

[37]

A. Turing, On the chemical basis of morphogenesis,, Phil. Trans. Royal Soc. B, 237 (1952), 37.   Google Scholar

[38]

V. K. Vanag and I. R. Epstein, Cross-diffusion and pattern formation in reaction diffusion systems,, Phys. Chem. Chem. Phys., 11 (2009), 897.  doi: 10.1039/B813825G.  Google Scholar

[39]

C. Venkataraman, O. Lakkis and A. Madzvamuse, Global existence for semilinear reaction-diffusion systems on evolving domains,, Journal of Mathematical Biology, 64 (2012), 41.  doi: 10.1007/s00285-011-0404-x.  Google Scholar

[40]

A. Vergara. F. Capuano, L. Paduano and R. Sartorio, Lysozyme mutual diffusion in solutions crowded by poly(ethylene glycol),, Macromolecules, 39 (2006), 4500.   Google Scholar

[41]

Z. Xie, Cross-diffusion induced Turing instability for a three species food chain model,, J. Math. Analy. and Appl., 388 (2012), 539.  doi: 10.1016/j.jmaa.2011.10.054.  Google Scholar

[42]

J. F. Zhang, W. T. Li and Y. X. Wang, Turing patterns of a strongly coupled predator-prey system with diffusion effects,, Non. Anal., 74 (2011), 847.  doi: 10.1016/j.na.2010.09.035.  Google Scholar

[43]

E. P. Zemskov, V. K. Vanag and I. R. Epstein, Amplitude equations for reaction-diffusion systems with cross-diffusion,, Phys. Rev. E., 84 (2011).  doi: 10.1103/PhysRevE.84.036216.  Google Scholar

show all references

References:
[1]

D. Acheson, Elementary Fluid Dynamics,, Oxford University Press, (1990).   Google Scholar

[2]

M. Baines, Moving Finite Elements,, Oxford University Press, (1994).   Google Scholar

[3]

J. Bard and I. Lauder, How well does Turing's Theory of morphogenesis work?,, J. Theor. Bio., 45 (1974), 501.  doi: 10.1016/0022-5193(74)90128-3.  Google Scholar

[4]

R. Barreira, C. M. Elliott and A. Madzvamuse, The surface finite element method for pattern formation on evolving biological surfaces,, J. Math. Bio., 63 (2011), 1095.  doi: 10.1007/s00285-011-0401-0.  Google Scholar

[5]

V. Capasso and D. Liddo, Asymptotic behaviour of reaction-diffusion systems in population and epidemic models. The role of cross-diffusion,, J. Math. Biol., 32 (1994), 453.  doi: 10.1007/BF00160168.  Google Scholar

[6]

V. Capasso and D. Liddo, Global attractivity for reaction-diffusion systems. The case of nondiagonal diffusion matrices,, J. Math. Anal. and App., 177 (1993), 510.  doi: 10.1006/jmaa.1993.1274.  Google Scholar

[7]

E. J. Crampin, W. W. Hackborn and P. K. Maini, Pattern formation in reaction-diffusion models with nonuniform domain growth,, Bull. Math. Biol., 64 (2002), 747.  doi: 10.1006/bulm.2002.0295.  Google Scholar

[8]

G. Gambino, M. C. Lombardo and M. Sammartino, Turing instability and traveling fronts for nonlinear reaction-diffusion system with cross-diffusion,, Maths. Comp. in Sim., 82 (2012), 1112.  doi: 10.1016/j.matcom.2011.11.004.  Google Scholar

[9]

G. Gambino, M. C. Lombardo and M. Sammartino, Pattern formation driven by cross-diffusion in 2-D domain,, Non. Anal. Real World Applications, 14 (2013), 1755.  doi: 10.1016/j.nonrwa.2012.11.009.  Google Scholar

[10]

A. Gierer and H. Meinhardt, A theory of biological pattern formation,, Kybernetik, 12 (1972), 30.  doi: 10.1007/BF00289234.  Google Scholar

[11]

G. Hetzer, A. Madzvamuse and W. Shen, Characterization of Turing diffusion-driven instability on evolving domains,, Disc. Con. Dyn. Sys., 32 (2012), 3975.  doi: 10.3934/dcds.2012.32.3975.  Google Scholar

[12]

M. Iida and M. Mimura, Diffusion, cross-diffusion an competitive interaction,, J. Math. Biol., 53 (2006), 617.  doi: 10.1007/s00285-006-0013-2.  Google Scholar

[13]

K. Korvasova, E. A. Gaffney, M. P. Maini, M. A. Ferreira and V. Klika, Investigating the Turing conditions for diffusion-driven instability in the presence of binding immobile substrate,, J. Theor. Biol., 367 (2015), 286.  doi: 10.1016/j.jtbi.2014.11.024.  Google Scholar

[14]

S. Kovács, Turing bifurcation in a system with cross-diffusion,, Nonlinear Analysis, 59 (2004), 567.  doi: 10.1016/S0362-546X(04)00273-1.  Google Scholar

[15]

O. Lakkis, A. Madzvamuse and C. Venkataraman, Implicit-explicit timestepping with finite element approximation of reaction-diffusion systems on evolving domains,, SIAM JNA, 51 (2013), 2309.  doi: 10.1137/120880112.  Google Scholar

[16]

C. B. Macdonald, B. Merriman and S. J. Ruuth, Simple computation of reaction- diffusion processes on point clouds,, Proc. Nat. Acad. Sci. USA., 110 (2013), 9209.  doi: 10.1073/pnas.1221408110.  Google Scholar

[17]

C. B. Macdonald and S. J. Ruuth, The implicit closest point method for the numerical solution of partial differential equations on surfaces,, SIAM J. Sci. Comput., 31 (2010), 4330.  doi: 10.1137/080740003.  Google Scholar

[18]

A. Madzvamuse, R. D. K. Thomas, P. K. Maini and A. J. Wathen, A numerical approach to the study of spatial pattern formation in the ligaments of arcoid bivalves,, Bulletin of Mathematical Biology, 64 (2002), 501.  doi: 10.1006/bulm.2002.0283.  Google Scholar

[19]

A. Madzvamuse, P. K. Maini and A. J. Wathen, A moving grid finite element method applied to a model biological pattern generator,, J. Comp. Phys., 190 (2003), 478.  doi: 10.1016/S0021-9991(03)00294-8.  Google Scholar

[20]

A. Madzvamuse, A. J. Wathen and P. K. Maini, A moving grid finite element method for the simulation of pattern generation by Turing models on growing domains,, J. Sci. Comp., 24 (2005), 247.  doi: 10.1007/s10915-004-4617-7.  Google Scholar

[21]

A. Madzvamuse, Time-stepping schemes for moving grid finite elements applied to reaction-diffusion systems on fixed and growing domains,, J. Sci. Phys., 214 (2006), 239.  doi: 10.1016/j.jcp.2005.09.012.  Google Scholar

[22]

A. Madzvamuse and M. K. Maini, Velocity-induced numerical solutions of reaction-diffusion systems on fixed and growing domains,, J. Comp. Phys., 225 (2007), 100.  doi: 10.1016/j.jcp.2006.11.022.  Google Scholar

[23]

A. Madzvamuse, Diffusion-driven instability for growing domains with divergence free mesh velocity,, Nonlinear Analysis: Theory, 17 (2009).   Google Scholar

[24]

A. Madzvamuse, E. A. Gaffney and M. K. Maini, Stability analysis of non-autonomous reaction-diffusion systems: the effects of growing domains,, J. Math. Biol., 61 (2010), 133.  doi: 10.1007/s00285-009-0293-4.  Google Scholar

[25]

A. Madzvamuse and R. Barreira, Exhibiting cross-diffusion-induced patterns for reaction-diffusion systems on evolving domains and surfaces,, Physical Review E, 90 (2014).  doi: 10.1103/PhysRevE.90.043307.  Google Scholar

[26]

A. Madzvamuse, H. S. Ndakwo and R. Barreira, Cross-diffusion-driven instability for reaction-diffusion systems: Analysis and simulations,, Journal of Math. Bio., 70 (2015), 709.  doi: 10.1007/s00285-014-0779-6.  Google Scholar

[27]

P. K. Maini, E. J. Crampin, A. Madzvamuse, A. J. Wathen and R. D. K. Thomas, Implications of domain growth in morphogenesis,, in Mathematical Modelling and Computing in Biology and Medicine, 1 (2003), 67.   Google Scholar

[28]

M. S. McAfree and O. Annunziata, Cross-diffusion in a colloid-polymer aqueous system,, Fluid Phase Equilibria, 356 (2013), 46.   Google Scholar

[29]

C. C. McCluskey, A strategy for constructing Lyapunov functions for non-autonomous linear differential equations,, Linear Algebra and its Applications, 409 (2005), 100.  doi: 10.1016/j.laa.2005.04.006.  Google Scholar

[30]

J. D. Murray, Mathematical Biology. II,, Volume 18 of Interdisciplinary Applied Mathematics. Springer-Verlag, (2003).   Google Scholar

[31]

R. G. Plaza, F. Sánchez-Garduño, P. Padilla, R. A. Barrio and P. K. Maini, The effect of growth and curvature on pattern formation,, J. Dynam. and Diff. Eqs., 16 (2004), 1093.  doi: 10.1007/s10884-004-7834-8.  Google Scholar

[32]

I. Prigogine and R. Lefever, Symmetry breaking instabilities in dissipative systems. II,, J. Chem. Phys., 48 (1968), 1695.  doi: 10.1063/1.1668896.  Google Scholar

[33]

F. Rossi, V. K. Vanag, E. Tiezzi and I. R. Epstein, Quaternary cross-diffusion in water-in-oil microemulsions loaded with a component of the Belousov-Zhabotinsky reaction,, J. Phys. Chem. B, 114 (2010), 8140.  doi: 10.1021/jp102753b.  Google Scholar

[34]

R. Ruiz-Baier and C. Tian, Mathematical analysis and numerical simulation of pattern formation under cross-diffusion,, Non. Anal. Real World Applications, 14 (2013), 601.  doi: 10.1016/j.nonrwa.2012.07.020.  Google Scholar

[35]

J. Schnakenberg, Simple chemical reaction systems with limit cycle behaviour,, J. Theor. Biol., 81 (1979), 389.  doi: 10.1016/0022-5193(79)90042-0.  Google Scholar

[36]

L. Z. Tian and M. Pedersen, Instability induced by cross-diffusion in reaction-diffusion systems,, Non. Anal.: Real World Applications, 11 (2010), 1036.  doi: 10.1016/j.nonrwa.2009.01.043.  Google Scholar

[37]

A. Turing, On the chemical basis of morphogenesis,, Phil. Trans. Royal Soc. B, 237 (1952), 37.   Google Scholar

[38]

V. K. Vanag and I. R. Epstein, Cross-diffusion and pattern formation in reaction diffusion systems,, Phys. Chem. Chem. Phys., 11 (2009), 897.  doi: 10.1039/B813825G.  Google Scholar

[39]

C. Venkataraman, O. Lakkis and A. Madzvamuse, Global existence for semilinear reaction-diffusion systems on evolving domains,, Journal of Mathematical Biology, 64 (2012), 41.  doi: 10.1007/s00285-011-0404-x.  Google Scholar

[40]

A. Vergara. F. Capuano, L. Paduano and R. Sartorio, Lysozyme mutual diffusion in solutions crowded by poly(ethylene glycol),, Macromolecules, 39 (2006), 4500.   Google Scholar

[41]

Z. Xie, Cross-diffusion induced Turing instability for a three species food chain model,, J. Math. Analy. and Appl., 388 (2012), 539.  doi: 10.1016/j.jmaa.2011.10.054.  Google Scholar

[42]

J. F. Zhang, W. T. Li and Y. X. Wang, Turing patterns of a strongly coupled predator-prey system with diffusion effects,, Non. Anal., 74 (2011), 847.  doi: 10.1016/j.na.2010.09.035.  Google Scholar

[43]

E. P. Zemskov, V. K. Vanag and I. R. Epstein, Amplitude equations for reaction-diffusion systems with cross-diffusion,, Phys. Rev. E., 84 (2011).  doi: 10.1103/PhysRevE.84.036216.  Google Scholar

[1]

Hirofumi Izuhara, Shunsuke Kobayashi. Spatio-temporal coexistence in the cross-diffusion competition system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 919-933. doi: 10.3934/dcdss.2020228

[2]

Yukio Kan-On. On the limiting system in the Shigesada, Kawasaki and Teramoto model with large cross-diffusion rates. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3561-3570. doi: 10.3934/dcds.2020161

[3]

Qing Li, Yaping Wu. Existence and instability of some nontrivial steady states for the SKT competition model with large cross diffusion. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3657-3682. doi: 10.3934/dcds.2020051

[4]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[5]

Hideki Murakawa. Fast reaction limit of reaction-diffusion systems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1047-1062. doi: 10.3934/dcdss.2020405

[6]

Alexandra Köthe, Anna Marciniak-Czochra, Izumi Takagi. Hysteresis-driven pattern formation in reaction-diffusion-ODE systems. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3595-3627. doi: 10.3934/dcds.2020170

[7]

Guillaume Cantin, M. A. Aziz-Alaoui. Dimension estimate of attractors for complex networks of reaction-diffusion systems applied to an ecological model. Communications on Pure & Applied Analysis, 2021, 20 (2) : 623-650. doi: 10.3934/cpaa.2020283

[8]

Chihiro Aida, Chao-Nien Chen, Kousuke Kuto, Hirokazu Ninomiya. Bifurcation from infinity with applications to reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3031-3055. doi: 10.3934/dcds.2020053

[9]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[10]

Jason Murphy, Kenji Nakanishi. Failure of scattering to solitary waves for long-range nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1507-1517. doi: 10.3934/dcds.2020328

[11]

Kaixuan Zhu, Ji Li, Yongqin Xie, Mingji Zhang. Dynamics of non-autonomous fractional reaction-diffusion equations on $ \mathbb{R}^{N} $ driven by multiplicative noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020376

[12]

Shin-Ichiro Ei, Hiroshi Ishii. The motion of weakly interacting localized patterns for reaction-diffusion systems with nonlocal effect. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 173-190. doi: 10.3934/dcdsb.2020329

[13]

El Haj Laamri, Michel Pierre. Stationary reaction-diffusion systems in $ L^1 $ revisited. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 455-464. doi: 10.3934/dcdss.2020355

[14]

Klemens Fellner, Jeff Morgan, Bao Quoc Tang. Uniform-in-time bounds for quadratic reaction-diffusion systems with mass dissipation in higher dimensions. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 635-651. doi: 10.3934/dcdss.2020334

[15]

Gheorghe Craciun, Jiaxin Jin, Casian Pantea, Adrian Tudorascu. Convergence to the complex balanced equilibrium for some chemical reaction-diffusion systems with boundary equilibria. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1305-1335. doi: 10.3934/dcdsb.2020164

[16]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[17]

Yoshihisa Morita, Kunimochi Sakamoto. Turing type instability in a diffusion model with mass transport on the boundary. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3813-3836. doi: 10.3934/dcds.2020160

[18]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[19]

Masaharu Taniguchi. Axisymmetric traveling fronts in balanced bistable reaction-diffusion equations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3981-3995. doi: 10.3934/dcds.2020126

[20]

Maho Endo, Yuki Kaneko, Yoshio Yamada. Free boundary problem for a reaction-diffusion equation with positive bistable nonlinearity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3375-3394. doi: 10.3934/dcds.2020033

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (194)
  • HTML views (0)
  • Cited by (11)

[Back to Top]