\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Local solutions with infinite energy of the Maxwell-Chern-Simons-Higgs system in Lorenz gauge

Abstract Related Papers Cited by
  • We consider the Maxwell-Chern-Simons-Higgs system in Lorenz gauge and use a null condition to show local well-psoedness for low regularity data. This improves a recent result of J. Yuan.
    Mathematics Subject Classification: 35Q40, 35L70.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    P. d'Ancona, D. Foschi and S. Selberg, Product estimates for wave-Sobolev spaces in 2+1 and 1+1 dimensions, Contemporary Math., 526 (2010), 125-150.doi: 10.1090/conm/526/10379.

    [2]

    D. Chae and M. Chae, The global existence in the Cauchy problem of the Maxwell-Chern-Simons-Higgs system, J. Math. Phys., 43 (2002), 5470-5482.doi: 10.1063/1.1507609.

    [3]

    C. Lee, K. Lee and H. Min, Self-dual Maxwell-Chern-Simons solitons, Phys. Letters B, 252 (1990), 79-83.doi: 10.1016/0370-2693(90)91084-O.

    [4]

    S. Klainerman and M. Machedon, On the Maxwell-Klein-Gordon equation with finite energy, Duke Math. J., 74 (1994), 19-44.doi: 10.1215/S0012-7094-94-07402-4.

    [5]

    S. Selberg and A. Tesfahun, Finite energy global well-posedness of the Maxwell-Klein-Gordon system in Lorenz gauge, Comm. PDE, 35 (2010), 1029-1057.doi: 10.1080/03605301003717100.

    [6]

    S. Selberg and A. Tesfahun, Global well-posedness of the Chern-Simons-Higgs equations with finite energy, Discrete Cont. Dyn. Syst., 33 (2013), 2531-2546.doi: 10.3934/dcds.2013.33.2531.

    [7]

    J. Yuan, On the well-posedness of Maxwell-Chern-Simons-Higgs system in the Lorenz gauge, Discrete Cont. Dyn. Syst., 34 (2014), 2389-2403.doi: 10.3934/dcds.2014.34.2389.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(59) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return